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Cannabinoids are a heterogenous group of compounds, which 
activate the cannabinoid receptors found throughout the body. 
They are not only found in the cannabis plant, but also produced 
by the human body (endocannabinoids). In addition, there are 
artificially synthetized synthetic cannabinoids, who are functionally 
similar to Δ9-tetrahydrocannabinol (THC), the main psychoactive 
and analgesic compound found in the plant (1,2). All of these 
compounds exert their effects via interaction with cannabinoid-1 
(CB1) and cannabinoid-2 (CB2) receptors (3,4). Both CB1 and CB2 
receptors are G-protein-coupled receptors, primarily exhibiting Gi/o 
signaling mechanisms. CB1 receptors are mainly expressed in brain 
structures, but also in peripheral tissues; on the other hand, CB2 
receptors are expressed most abundantly in immune system cells in 
the periphery. Many of the unwanted effects of cannabinoid receptor 
agonists are caused via CB1 receptors located in the central nervous 
system (5,6).
Endocannabinoid system is comprised of CB1 and CB2 receptors, 
their endogenous lipid ligands (endocannabinoids) and the enzymes 
involved in their biosynthesis and inactivation. Endocannabinoids 
are derived from arachidonic acid (AA); anandamide [arachidonyl 
ethanolamide (AEA)] and 2-arachydonoyl-glycerol (2-AG) are best 
characterized and considered to be the main endocannabinoids (6,7). 
AEA and 2-AG are produced at post-synaptic neurons with two-
step processes. Phosphatidylethanolamine is converted to N-acyl-
phosphatidylethanolamine (NAPE) by the enzyme N-acyltransferase; 
then NAPE is hydrolyzed to N-acylethanolamines, such as AEA, 
by a NAPE-selective phospholipase D (NAPE-PLD). On the other 

hand, 2-AG is synthesized from diacylglycerol (DAG) by DAG 
lipase, following production of DAG from inositol phospholipids 
(7-9). Endocannabinoids are synthesized "on demand", released 
immediately, act in an autocrine or paracrine manner, and their 
biological actions rapidly terminate (8,10). AEA and 2-AG are 
removed from the extracellular space by a cellular uptake mechanism, 
followed by enzymatic inactivation. Relatively little is known about 
2-AG uptake, but N-arachydonoyl-phenolamine (AM-404), the 
metabolite of paracetamol, is known to inhibit uptake of AEA. This 
is important with regard to the interaction of the analgesics and the 
endocannabinoid system, the main concept of this review. AEA is 
predominantly degraded to AA and ethanolamine by fatty acid amide 
hydrolase (FAAH), whereas 2-AG is predominantly metabolized to 
AA and glycerol by monoacylglycerol lipase (MAGL), and to a lesser 
extent by FAAH (9,11). In addition to FAAH and MAGL, AEA and 
2-AG are demonstrated to be good substrates for cytochrome p450 
monooxygenases, lipooxygenases and cyclooxygenases, mainly 
COX-2 (12-14). Besides FAAH and MAGL inhibition, these pathways 
of degradation are also important in elevation of endocannabinoid 
levels; since all non-steroidal anti-inflammatory drugs (NSAIDs) 
inhibit COX enzymes, COX-2 inhibition may participate in the 
antinociceptive effects of analgesic drugs.
Cannabis has been used for the management of pain for centuries, 
and numerous experimental and clinical research works have found 
effectiveness of the plant’s constituents, endocannabinoids and 
synthetic cannabinoids in different pain models (15-17). However, 
the number of approved cannabinoid-based medicines is small. 
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Nausea and vomiting related to chemotherapy, anorexia related 
to AIDS, and chronic pain and spasticity associated with multiple 
sclerosis are the conditions that cannabinoids are approved for 
(6,18), but they are generally prescribed as an alternative and/or 
potential adjunctive agents in these indications. When targeting 
the endocannabinoid system as a promising future therapeutic 
strategy (19), inhibition of FAAH, MAGL and COX-2 seems to 
be one of the most attractive approaches (6,10,19,20). Such is due 
to the role of these enzymes in inactivation of endocannabinoids, 
with their inhibition increasing local endocannabinoid levels. The 
endocannabinoid system can be the target of many therapies, as it 
is involved in a number of physiological regulation pathways, but 
in this review we will focus mostly on modulation on nociception.
NSAIDs exhibit moderate analgesic, anti-inflammatory and 
antipyretic properties; they are the most common pain relief 
medicines in the world. The principal mechanism of action of 
NSAIDs is inhibiting the activity of COX enzymes, and thereby 
reducing the production of prostaglandins (21). However, 
accumulating evidence shows that NSAIDs’ therapeutic effects 
involve mechanisms other than COX inhibition, potentially 
including interaction with nitric oxide, opioidergic, monoaminergic 
and cholinergic systems (22). Involvement of the endocannabinoid 
system in the analgesic effects of NSAIDs also seems as a likely 
mechanism. Similar to cannabinoids/endocannabinoids (23,24), 
NSAIDs inhibit pain at the peripheral, spinal and supraspinal levels 
(25,26). Paracetamol and dipyrone are two different analgesic drugs, 
not being considered as classical NSAIDs, as they possess very 
little anti-inflammatory activity. However, the endocannabinoid 
system has been shown to participate in the antinociceptive actions 
of both NSAIDs, and paracetamol and dipyrone in recent years 
(27-30). In this review, we group classical NSAIDs, paracetamol 
and dipyrone together under the name of “non-opioid analgesics” 
and focus on the contribution of the endocannabinoid system for 
the antinociceptive effects of these analgesic drugs.

Link between classical NSAIDs and the endocannabinoid 
system

Although the primary mechanism of action of NSAIDs is inhibition 
of COX enzymes, which are responsible for the production of 
prostaglandins, their ability to inhibit FAAH activity, responsible 
for the degradation of AEA, has also been shown. Augmenting 
endocannabinoid tonus locally, by inhibiting the degradative 
enzymes, may provide local efficacy in tissues, contributing for 
the control of nociception. In 1996, the potent anti-inflammatory 
drug indomethacin was suggested to reduce FAAH activity in the 
mouse uterus both in vivo and in vitro (31). Then, in a series of 
experiments, Fowler’s research group reported that several acidic 
NSAIDs, including ibuprofen, ketorolac, flurbiprofen, and some of 
their primary metabolites, inhibited FAAH (32-34). The inhibitory 
potency of these NSAIDs was relatively low, but increased 5-10-
fold as the assay pH was reduced (35-37). These are very important 
findings, considering lowered pH in inflamed tissues together with 
effectiveness of local administrations and when acidic drugs are 
accumulated in these tissues. Accordingly, locally administered 
ibuprofen and rofecoxib produce synergistic effects with AEA, 

and this effect is blocked by a CB1 receptor antagonist (38,39). In 
a related study, indomethacin was shown to reduce carrageenan-
induced edema, and a CB2 receptor antagonist was effective in 
preventing the NSAID’s action (40). In these studies, reduction 
of AEA metabolism via inhibition of FAAH activity is proposed 
as the mechanism of action for NSAIDs-induced antinociception; 
however, it should be taken into consideration that the inhibition of 
FAAH by NSAIDs does not appear to be potent (27,34,41).
Besides FAAH inhibition, another way of elevating 
endocannabinoid tonus via preventing their metabolism is 
COX-2 inhibition. The principal endocannabinoids AEA and 
2-AG are good substrates for COX-2, producing prostaglandin-
ethanolamides (prostamides) and prostaglandin-glycerol esters; a 
reduction in the levels of these proinflammatory and pronociceptive 
mediators may also contribute for their antinociceptive activity 
(12,13). There is an increasing interest on differential effects of 
NSAIDs on COX isoenzymes. Duggan et al. (42) indicated that 
(R) enantiomers of ibuprofen, naproxen and flurbiprofen are potent 
substrate-selective inhibitors of endocannabinoid oxygenation by 
COX-2; these NSAIDs are considered to be inactive as COX-2 
inhibitors. Similarly, ibuprofen, mefamic acid and flurbiprofen 
are more potent inhibitors of COX-2-cyclooxygenation of 2-AG 
than of AA (42-44). Ibuprofen also exerts potent inhibition of 
AEA cyclooxygenation compared to AA oxygenation (41). 
Endocannabinoid-preferring COX inhibitors appear to be among 
potential novel analgesics; simultaneous FAAH and COX 
inhibition also seems to be an attractive target (27,45,46).
Increase in endocannabinoid tonus can be reached not only by 
decreasing their metabolism via inhibition of degradative enzymes, 
but also by augmenting endocannabinoid biosynthesis. Since AA 
is also important in endocannabinoid synthesis, COX inhibition 
probably provides more AA for endocannabinoid synthesis rather 
than prostaglandin synthesis (22,47). Indeed, it has been suggested 
that AA mobilization increases AEA production (48). Therefore, it 
seems that another mechanism implicated in the participation of 
endocannabinoids in NSAIDs’ effects is shunting of free AA from 
prostaglandin synthesis to endocannabinoid synthesis, although 
how AA participates in such production is not known.
Regarding the involvement of the endocannabinoid system in the 
analgesic effects of NSAIDs, Gühring et al. (49) proposed that, first, 
at the spinal level, indomethacin induces a shift of AA metabolism 
toward endocannabinoid synthesis; second, indomethacin lowers 
nitric oxide production, reducing activation of endocannabinoid 
transporters and thus breakdown of endocannabinoids; and third, 
it inhibits FAAH and hence enhances endocannabinoid levels. 
Spinal administration of flurbiprofen and intracerebroventricular 
administration of celecoxib also exerts endocannabinoid-
dependent antinociception (50,51). Co-administration of ketorolac 
and the mixed CB1/CB2 cannabinoid receptor agonist WIN 
55,212-2 produces an additive antinociceptive interaction in an 
inflammatory visceral pain model (16). Co-administration of a 
FAAH inhibitor and the COX inhibitor diclofenac also elicits 
a synergistic antinociceptive effect in the acetic acid model of 
visceral nociception (45). Contradictory findings are also worth 
mentioning; Silva et al. (52) reported that cannabinoid receptors 
do not seem to be involved in the peripheral antinociceptive 
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mechanisms of dipyrone, diclofenac and indomethacin, following 
intra-plantar administration of the NSAIDs. Antagonism of 
cannabinoid receptors also does not influence diclofenac-induced 
antinociception when given systemically (53). In another study, 
neither the CB1 nor the CB2 antagonist blocked the effects of 
the NSAIDs in animals chronically administered with THC (54). 
Staniaszek et al. (55) concluded that nimesulide inhibits spinal 
neuronal responses in a CB1-dependent way, but they did not 
detect a concomitant elevation in AEA or 2-AG levels.

Link between paracetamol and the endocannabinoid system

Paracetamol (acetaminophen) is one of the most widely used drugs as 
an antipyretic and analgesic. Unlike classical NSAIDs, paracetamol 
does not exert any anti-inflammatory activity, whereas its analgesic 
activity is similar to that of NSAIDs. Inhibition of peripheral 
COX enzymes does not appear to be primarily responsible for the 
antinociceptive activity of paracetamol; but probably some central 
mechanisms, including the endocannabinoid system, participate 
in these effects (56). Inhibition of central COX, modulation of 
serotonergic and opioidergic systems, and inhibition of nitric oxide 
synthetases (NOS) are among the proposed mechanisms (57-60). 
In 2005, Högestätt et al. (61) reported that paracetamol, following 
deacetylation to p-aminophenol, is FAAH-dependently conjugated 
with AA in the brain and spinal cord to form the bioactive AM-
404. Then, CB1 receptors have been demonstrated to participate 
in both local and systemic antinociceptive effects of paracetamol 
(62,63). In their detailed research, Mallet et al. (28) suggested that 
AM-404 indirectly activates the supraspinal CB1 receptors, which 
in turn reinforces the activity of descending serotonergic inhibitory 
pathways. The metabolite AM-404 was already known to have the 
ability of inhibiting uptake of AEA; moreover, it has also shown 
to be a central COX inhibitor, a FAAH inhibitor, a weak CB1 
activator, and a potent activator of TRPV1 (46,61,64-67). All of 
these properties of AM-404 may be related to its mediatory role 
in the antinociceptive activity of paracetamol. Results of another 
study implied that modulation of the endocannabinoid system 
mediates the synergistic antinociceptive effects of paracetamol 
combinations (68). There are also some contrary data, indicating 
that cannabinoid receptor antagonists do not block the effects of 
paracetamol, but these results were obtained in animals following 
chronic administration of THC or in an acute visceral pain model 
(54,69).
In most of these studies, pharmacological blockade or genetic 
deletion of cannabinoid receptors have been performed. Our 
group measured local endocannabinoid and N-acylethanolamide 
levels in the brain and spinal cord of rats, in order to observe the 
interaction of paracetamol and endocannabinoids directly; we 
observed an increase in 2-AG levels in the PAG and the RVM 12 
h after paracetamol administration, but a decrease in AEA levels 
in the RVM and spinal cord (70). There are also studies on the 
contribution of the endocannabinoid system to some other effects 
of paracetamol. It was suggested that paracetamol exhibits a dose-
dependent anxiolytic effect in mice via cannabinoid CB1 receptors 
(71). Paracetamol was also shown to enhance social behavior 
and cortical cannabinoid levels in mice in a CB1-mediated way 

(72). On the other hand, antagonism of cannabinoid CB1 and 
CB2 receptors does not prevent the antipruritic effect of systemic 
paracetamol (73).

Link between dipyrone and the endocannabinoid system

Dipyrone (metamizole) is another worldwide used antipyretic 
and analgesic drug. Unlike classical NSAIDs, but similar to 
paracetamol, it possesses little anti-inflammatory activity. 
Despite intensive research, the precise mechanism underlying 
the antinociceptive effect of dipyrone is still unknown. Rather 
than peripheral COX inhibition, it has been suspected for a long 
time that dipyrone elicits centrally-mediated antinociceptive 
action (74-76). Initially, research has focused on the concept that 
endogenous opioids are involved in dipyrone’s antinociception. 
When microinjected into the PAG, dipyrone exerts antinociceptive 
effects mediated by endogenous opioids of the RVM (77), which 
then triggers descending inhibition of spinal nociception (78). 
The role of endogenous opioids in the spinal cord was also 
demonstrated (79). In another study, PAG-administered dipyrone 
induced development of tolerance in rats (80). When administered 
intravenously, dipyrone also causes anti-nociception by activating 
the endogenous opioid system (81). Other than its interaction with 
endogenous opioids, dipyrone is suggested to possess (weak) 
antinociceptive activity by classical COX inhibition (82), and by 
activation of the L-arginine-nitric oxide pathway and subsequent 
KATP channel opening (83), although there are some opposite 
findings (84,85).
In 2012, Rogosch et al. (29) demonstrated that two unknown 
metabolites of dipyrone form in the brain and spinal cord. FAAH 
seems to be responsible for the formation of these metabolites, 
and once formed, they bind weakly to cannabinoid receptors, but 
are modest inhibitors of COX-1 and -2. Then, it was shown that 
microinjection of dipyrone into the PAG elicits antinociception 
via CB1 receptors in an inflammatory pain model (86). There are 
studies that suggest mechanisms other than the endocannabinoid 
system for the antinociceptive effects of dipyrone, but these 
results were obtained under non-inflammatory conditions (30,87). 
However, the majority of the reports point to the important role of the 
endocannabinoid system in antinociception induced by dipyrone. It 
is suggested that activation of CB1, but not CB2 receptors, together 
with neuronal KATP opening is involved in the antihyperalgesic 
effect of dipyrone metabolites (88). These novel metabolites 
reduce the activity of ON-cells and enhance the activity of OFF-
cells in the RVM (25). Importantly, Crunfli et al. (47) indicated that 
the endocannabinoid system, especially CB1 receptors, is involved 
in analgesia, catalepsy and hypolocomotion induced by systemic 
dipyrone. They hypothesized that COX and FAAH inhibition 
together may increase endocannabinoid availability and exhibit 
the above-mentioned effects via CB1 receptor stimulation. In 
accordance with these reports, a computational analysis suggested 
dipyrone metabolite 4-methylaminoantipyrine as a CB1 receptor 
agonist (89). In the research mentioned in the paracetamol section, 
we also measured local endocannabinoid levels in the brain and 
spinal cord of rats following systemic dipyrone administration; 
dipyrone exerts no action on 2-AG levels, but unexpectedly 



312

Balkan Med J, Vol. 37, No.6, 2020

Topuz et al. Analgesics and the Endocannabinoid System

leads to a reduction in AEA levels in the RVM and spinal cord 
(70). In a very recent study, dipyrone, following hydrolysis to 
its active metabolite 4-methylaminoantipyrine, exerted a local 
antihyperalgesic effect partially dependent on CB2 and kappa-
opioid receptors (90). Regarding studies that focus on domains 
beyond nociception, unlike paracetamol, systemic dipyrone does 
not exert anxiolytic-like effects in mice (91).
Cannabinoids modulate nociception at the peripheral, spinal 
and supraspinal levels (23,24). After activating supraspinal 
cannabinoid receptors, cannabinoids inhibit the presynaptic release 
of GABA via CB1 receptors in the lateral-ventrolateral PAG and 
RVM, and hence increase the postsynaptic neuron activity (92-95). 
In addition to their peripheral actions, non-opioid analgesics and/
or their metabolites may augment endocannabinoid levels and/or 
directly activate cannabinoid receptors, facilitating the activity of 
descending inhibitory pathways, and thus decreasing nociceptive 
transmission.

We conclude that the endocannabinoid system may participate in 
the antinociceptive effects of non-opioid analgesics via several 
mechanisms (Figure 1):
1- Activation of cannabinoid CB1 receptors (peripheral, spinal, 
supraspinal) by non-opioid analgesics and/or their metabolites 
(29,88,90);
2- Increase in endocannabinoid levels by;
a) inhibition of degradative enzymes;
 i) via FAAH inhibition (34,41);
 ii) via COX-2 inhibition (27,42,49);
b) shifting AA metabolism toward endocannabinoid synthesis due 
to COX inhibition (47-49);
c) reducing activation of endocannabinoid transporters and thus 
endocannabinoid degradation due to inhibition of NOS production 
(96,97);
d) induction of endocannabinoid release (70,94);
e) inhibition of cellular uptake of endocannabinoids by the 
metabolite (paracetamol) (22,61).

FIG. 1. Possible mechanisms of action regarding to contribution of the endocannabinoid system to the antinociceptive effects of non-opioid analgesics. 
Non-opioid analgesic drugs and their metabolites; 1) may activate cannabinoid receptors, 2, 3) may reduce endocannabinoid degradation via FAAH 
and/or COX-2 inhibition, 4) may induce arachidonic acid shift to endocannabinoid biosynthesis, 5, 6) may inhibit cellular uptake directly or via inhibiting 
nitric oxide synthase production, and finally 7) may stimulate endocannabinoid release. 
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