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INTRODUCTION

Sepsis is the leading cause of mortality and morbidity and 
remains a remarkable adversary to the intensive care unit (ICU).1,2 
Coagulation disorder is a major manifestation of sepsis induced by 
infection and acute systemic inflammatory response that results 
in endothelial injury.3,4 Sepsis-induced coagulopathy (SIC) is the 
coagulation disturbance of sepsis and is defined by the prothrombin 
time (PT)/international normalized ratio (INR) as well as platelet 
count, together with the sequential organ failure assessment (SOFA) 
score.5 Retrieving coagulation abnormalities in patients with SIC 
is important; however, current evidence reveals that the effects of 
anticoagulation therapy are controversial. Moreover, the Surviving 

Sepsis Campaign does not provide any specific anticoagulation 
recommendations.1 

Sepsis is a highly heterogeneous syndrome with different etiologies 
and pathophysiologies.6 The effectiveness of anticoagulant therapy 
in patients with SIC is controversial. Some therapies may benefit 
certain phenotypes; however, other phenotypes might be affected 
by the intervention, resulting in a neutral effect in all patients. 
Several studies have reported that anticoagulant therapy may 
improve outcomes in patients with SIC.7,8 Another study showed 
that only the high-risk group benefit but not low-to-moderate-risk 
subgroups.9 However, a phase III randomized controlled clinical 
trial revealed that recombinant human thrombomodulin (rhTM) did 
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not significantly reduce the 28-day mortality rate in patients with 
sepsis.10 In a multicenter registry study, 3,195 patients with severe 
sepsis or septic shock were classified into four phenotypes. rhTM 
was only associated with lower 28-day mortality and in-hospital 
mortality rates in one of the phenotypes.11 Thus, identifying the 
distinct therapeutic phenotypes of SIC is essential for targeted 
anticoagulant therapy.

This study aimed to identify the subphenotypes of SIC based on 
clinical and laboratory variables. Thus, we applied unsupervised 
consensus clustering and examined which subphenotype of SIC 
would benefit most from anticoagulant therapy using retrospective 
data from a large public database.

MATERIALS AND METHODS

Data Source

The Medical Information Mart for Intensive Care IV (MIMIC-
IV) database was used to identify patients with SIC. MIMIC-IV 
is a longitudinal single-center public free database that includes 
data of more than 40,000 patients admitted to the ICU and 
11,263 patients with sepsis (Sepsis-3 definition) at the Beth Israel 
Deaconess Medical Center from 2008 to 2019.12 All patients 
remained anonymous, and informed consent was approved by 
original ethical committee (Massachusetts Institute of Technology, 
No. 0403000206; Beth Israel Deaconess Medical Center, 
2001P001699).

Study Population

Initially, the study enrolled patients with sepsis who were admitted 
to the ICU. Sepsis was defined as suspected or confirmed infection 
plus an increase in the SOFA score of ≥ 2.13 Then, we enrolled 
patients with SIC by calculating the PT, platelet count, and SOFA 
score after ICU admission for each patient, and a total score of ≥ 4 
was used to diagnose SIC (Supplemental Table S1).5 Patients who 
met the following criteria were excluded: pregnancy, age of < 18 
years, ICU stay of < 24 h, and ≥ 20% missing values. 

Variables 

Clinical and laboratory variables were collected after the diagnosis 
of SIC. Baseline and demographic variables included age, sex, 
weight, comorbidities, time of ICU admission, and length of ICU 
stay. Vital signs including heart rate, body temperature, respiratory 
rate, blood pressure, and blood oxygen saturation were measured. 
Laboratory indicators included pH, PO2, PCO2, HCO3, PaCO2, 
base excess, lactate, hemoglobin, hematocrit (HCT), red blood 
cells (RBCs), white blood cells (WBCs), RBC, distribution width, 
mean corpuscular hemoglobin (MCH), platelets, lymphocyte, 
albumin, alanine aminotransferase (ALT), creatinine, blood urea 
nitrogen (BUN), and electrolytes. Coagulation variables included 
fibrinogen, PT, INR, and partial thromboplastin time (PTT). 
Risk scores, including the SOFA score and the simplified acute 
physiology score (SAP III), were calculated the day after diagnosis 
of SIC. Anticoagulant therapy included anticoagulants, heparin, 
plasma infusion, and platelet infusion. Other treatment and 
prognosis data were also obtained from the database.

Missing values were imputed by first applying the next observation 
carried backward (NOCB) method, followed by the last observation 
carried forward (LOCF) method.14 Briefly, we preferentially used 
the observations after the timepoint when SIC was diagnosed, and 
if the observation was still missing, it was imputed with the last 
observation value before that timepoint. If the missing value was 
not available from the database, the missing value was imputed by 
multiple imputations using the MICE package of R (Supplemental 
Table 2S).15 

SIC Subphenotypes

SIC subphenotypes were explored by the latent class analysis 
(LCA) and K-means clustering. Clinical and laboratory variables 
representing key pathophysiological domains were evaluated as 
class-defining variables, including baseline characteristics (age 
and heart rate), organ dysfunction severity (SOFA and SAP III 
scores), blood gas analysis (pH, PO2, and lactate), coagulation 
indicators (fibrinogen, INR, and PTT), hematology (WBCs, RBCs, 
hemoglobin, MCH, and platelets), and liver and renal functions 
(ALT, BUN, and creatinine). Correlations between variables were 
evaluated by Pearson’s correlation analysis, and highly correlated 
variables (> 0.7) were excluded, including PT, AST concentration, 
and total bilirubin (TBIL) concentration (Supplemental Figure 1S). 

LCA is one of the probabilistic finite-mixture modeling algorithms 
that allows the determination of unmeasured or unobserved groups 
within the population.16 During model training, the parameters 
were estimated based on maximum likelihood estimation. For 
the LCA, the basic approach was to select the model with the 
fewest classes that best fitted the data. A lower Akaike information 
criterion (AIC), sample size adjusted Bayesian information 
criterion (SABIC), and higher entropy were considered a good fit. 
In addition, the bootstrapped likelihood ratio test was conducted to 
compare whether the k class was better than the k-1 class.17 

We also determined the optimal number of clusters using a 
consensus K-means clustering approach. With K-means clustering, 
the separation of consensus matrix heatmaps was evaluated using 
the cumulative distribution function of the elbow method and 
cluster consensus plots. Statistical indices such as the Calinski-
Harabasz (CH) index, Hartigan index, cubic clustering criterion 
(CCC), Scott index, Davies and Bouldin (DB) index; and the 
Rubin and Beale index were reported using the NbClust package.18 
Visual clustering was also performed using t-distributed stochastic 
neighbor embedding (t-SNE) to reduce the dimensions and 
visualize in the lower dimensional space.19 The number of clusters 
was determined using the elbow and matrix heatmaps.20

Statistical Analysis

We described and compared the frequency and clinical 
characteristics of each class using the analysis of variance or 
Kruskal-Wallis test for numeric variables and the chi-square 
test or Fisher’s exact test for categorical variables. Thereafter, 
in each class, the relationship between anticoagulant therapy 
(anticoagulants, heparin, plasma, and platelet infusion) and clinical 
outcomes (28 days and in-hospital mortality) was explored using 
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the logistic regression analysis. The adjusted variables were age, 
heart rate, systolic blood pressure, hypertension, diabetes mellitus, 
SOFA score, fibrinogen, INR, hemoglobin, platelets, WBCs, 
creatinine, and lactate. 

A p-value of < 0.05 was considered statistically significant. All 
analyses were performed using Stata version 14.1 (StataCorp., 
College Station, TX, USA) and R version 3.6.2 (R Foundation, 
Vienna, Austria). 

RESULTS

Patients’ Baseline Characteristics

Of the 11,263 patients with sepsis who were admitted to the ICU, 
SIC developed in 4,993, who were enrolled in this study. The mean 
age was 67 years, and 58.7% were male. The rates of hypertension, 
diabetes mellitus, chronic obstructive pulmonary disease (COPD), 
and cancer were 32.4%, 34.8%, 26.6%, and 19.4%, respectively. 
Overall, anticoagulants and heparin were administered to 14.1% 
and 51.5% of the patients, respectively, and the plasma and platelet 
infusion rates were 25.2% and 16.5%, respectively. The in-hospital 
mortality and 28-day mortality rates were 23.3% and 31.0%, 
respectively (Table 1).

SIC Subphenotypes

Overall, 18 features (age, heart rate, SOFA score, APS III score, 
fibrinogen, INR, PTT, platelets, hemoglobin, MCH, WBCs, RBCs, 
BUN, creatinine, ALT, pH, PO2, and lactate) were included in 
the subphenotype analysis (correlation analysis in Supplemental 
Figure 1S). Generally, the AIC and SABIC values declined from 
class 2 to class 9; however, class 3 had the highest entropy value 
(0.92) among all classes in the LCA model (Table 2). Similar 
results were observed for the K-means clustering analysis. The 
elbow method also showed that the decline in the slope of the sum 
of the square errors was the greatest in class 3 (Figure 1a). The 
matrix heatmaps of K-means clustering showed the overall samples 
divided into three classes (Figure 1b). The three-class clusters 
were also confirmed by K-means clustering, such as the CH index, 

Hartigan index, CCC index, and DB index (Supplemental Figure 
2S), as well as hierarchical clustering (Supplemental Figure 3S). 
Thus, the three-class model was considered the best model by the 
LCA and K-means clustering. Then, we used t-SNE to reduce the 
dimensionality of the features and visualize the outputs. Each dot 
represents a patient that displayed clusters within the dimensionally 
reduced and scaled down feature space of the autoencoder 
embedding (Figure 2). 

SIC Characteristics Among Subphenotypes

Figure 3 shows the characteristics of the three classes, and Table 
1 presents the statistical comparisons. Class 1 (n = 1,808) had the 
lowest proportion of men (54.9%) and the highest rate of cancer 
(28.4%) and lowest body mass index, WBCs, RBCs, hemoglobin, 
HCT, platelets, INR, PT, TBIL, and creatinine. Class 2 (n = 1,157) 
was characterized by severe coagulopathy and multiple-organ 
dysfunction, had the highest INR, PT, PTT, TBIL, creatinine, 
lactate, and SOFA and SAP III scores, and had the highest rates 
of CRRT, vasopressin, and anticoagulant use; however, it still had 
the highest in-hospital mortality (48.1%) and 28-day mortality 
(55.9%). Class 3 was the largest (n = 2,028) and was characterized 
by older age and higher rates of comorbidities (hypertension, 
diabetes, and COPD), highest RBC and platelet counts, highest 
fibrinogen concentration, and lowest plasma and platelet infusion 
rates.

Effect of Anticoagulant Therapy in Subphenotypes with 
Outcomes 

Class 2 had significantly higher 28-day mortality and in-hospital 
mortality rates than the other classes. Moreover, class 2 received 
anticoagulants and plasma and platelet infusion more than the 
other classes. As shown in Table 3, in the unadjusted analysis, 
most anticoagulant therapies (anticoagulants, heparin, and plasma 
and platelet infusions) were risk factors for 28-day mortality and 
in-hospital mortality (odds radio [OR] > 1, p < 0.05) in all three 
classes, except for heparin therapy in classes 1 and 2, which was 
associated with a reduced risk of 28-day and in-hospital mortality 

FIG. 1. Elbow methods (a) and matrix heatmaps (b) of K-means clustering. (1a) The sum of the squared errors decreases sharply when k = 3, 
representing 3 is the best clusters. (1b) Distance from the overall samples to the cluster center. 
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TABLE 1. Baseline Characteristics of Clinical and Laboratory According Class.
Variables Total (n = 4,993) Class 1 (n = 1,808) Class 2 (n = 1,157) Class 3 (n = 2,028) P*
Age, years 67.57 ± 15.69 64.75 ± 15.68 64.06 ± 15.17 72.11 ± 14.88 < 0.001
Male, n (%) 2,930 (58.7) 992 (54.9) 708 (61.2) 1,230 (58.7) < 0.001
BMI, kg/m2 29.47 ± 8.89 28.40 ± 7.90 30.44 ± 9.19 29.68 ± 9.35 < 0.001
Heart rate, bpm 95.13 ± 21.00 95.26 ± 20.04 97.65 ± 22.05 93.60 ± 21.11 < 0.001
SBP, mmHg 106.56 ± 19.55 106.41 ± 18.84 104.51 ± 20.38 107.90 ± 19.58 0.002
DBP, mmHg 58.29 ± 14.23 58.27 ± 13.06 56.74 ± 15.09 59.22 ± 14.64 0.002
Comorbidity, n (%)
Hypertension 1,618 (32.4) 557 (30.8) 291 (25.2) 770 (38.0) < 0.001
Diabetes 1,737 (34.8) 561 (31.0) 427 (36.9) 749 (36.9) < 0.001
COPD 1,327 (26.6) 461 (25.5) 278 (24.0) 588 (29.0) 0.004
Malignant cancer 969 (19.4) 513 (28.4) 173 (15.0) 283 (14.0) < 0.001
WBC, *109/l 12.40 (7.50 - 19.00) 9.10 (5.20 - 14.55) 13.95 (8.10 - 21.70) 14.70 (10.10 - 20.60) < 0.001
RBC, *109/l 3.28 ± 0.73 2.75 ± 0.44 3.19 ± 0.69 3.79 ± 0.59 < 0.001
Hemoglobin, g/dl 9.76 ± 2.03 8.46 ± 1.34 9.69 ± 2.00 10.93 ± 1.84 < 0.001
Hematocrit, % 30.16 ± 6.16 25.92 ± 3.84 30.04 ± 6.13 33.97 ± 5.31 < 0.001
RDW, % 16.58 ± 2.71 16.93 ± 2.82 17.13 ± 2.78 15.96 ± 2.44 < 0.001
MCH, pg 30.03 ± 3.12 30.90 ± 2.94 30.67 ± 3.15 28.90 ± 2.90 < 0.001
MCV, fl 92.87 ± 8.60 94.79 ± 8.52 95.12 ± 8.91 89.92 ± 7.57 < 0.001
Platelet, *109/l 131.00 (81.00 - 215.00) 101.00 (61.00 - 149.00) 107 (66.00 - 173.50) 185.00 (123.00 - 288.00) < 0.001
Fibrinogen, IU/l 299.00 (165.00 - 474.00) 294.00 (168.25 - 443.75) 194.00 (129.00 - 345.00) 464.00 (302.75 - 623.50) < 0.001
INR 2.17 ± 1.32 1.82 ± 0.74 2.67 ± 1.84 2.18 ± 1.27 < 0.001
PT, s 18.70 (16.00 - 25.20) 17.30 (15.10 - 21.50) 22.30 (17.50 - 31.18) 18.60 (16.30 - 24.70) < 0.001
PTT, s 36.90 (31.40 - 47.900) 35.70 (30.60 - 44.30) 44.50 (35.10 - 60.50) 35.50 (30.90 - 43.2) < 0.001
Total bilirubin, K/μL 1.20 (0.60 - 3.10) 1.30 (0.50 - 3.20) 2.40 (0.90-7.30) 0.90 (0.50 - 1.90) < 0.001
ALT, IU/l 34.00 (18.00 - 91.00) 29.00 (16.00 - 60.00) 55.00 (23.75 - 256.00) 32.00 (17.00 - 87.00) < 0.001
AST, IU/l 54.00 (27.00 - 133.00) 44.00 (25.00 - 90.00) 113.00 (47.00 - 467.00) 46.00 (24.00 - 111.00) < 0.001
BUN, mg/dl 30.00 (19.00 - 49.00) 24.00 (15.00 - 39.00) 53.00 (35.00 - 78.00) 28.00 (18.00 - 43.00)
Creatinine, mg/dl 1.40 (0.90 - 2.40) 1.10 (0.70 - 1.70) 2.90 (1.90 - 4.50) 1.30 (0.90 - 1.90) < 0.001
Albumin, mEq/l 2.70 ± 0.63 2.61 ± 0.62 2.72 ± 0.75 2.76 ± 0.53 0.002
CK-MB, mg/dl 5.00 (2.00 - 11.00) 3.00 (2.00 - 7.00) 7.00 (4.00 - 20.00) 4.00 (2.00 - 9.00) < 0.001
Troponin t, mg/dl 0.10 (0.04 - 0.28) 0.09 (0.04 - 0.22) 0.14 (0.06 - 0.41) 0.09 (0.04 - 0.25) < 0.001
CRP 109.50 (54.05 - 186.15) 109.55 (51.68 - 182.38) 102.35 (50.43 - 175.15) 113.10 (58.80 - 211.85) 0.261
PH 7.33 ± 0.11 7.38 ± 0.08 7.25 ± 0.12 7.34 ± 0.09 < 0.001
PO2, mmHg 74.00 (44.00 - 118.00) 71.00 (43.00 - 114.50) 80.00 (48.00 - 129.00) 73.00 (43.00 - 113.00) < 0.001
PCO2, mmHg 39.00 (33.00 - 46.00) 38.00 (32.25 - 45.00) 39.00 (32.00 - 47.00) 41.00 (35.00 - 48.00) < 0.001
Lactate, mmol/l 2.10 (1.40 - 3.60) 1.80 (1.20 - 2.80) 3.80 (2.20 - 7.00) 1.90 (1.40 - 2.90) < 0.001
Sodium, mmol/l 137.99 ± 6.30 137.78 ± 5.78 137.25 ± 7.30 138.59 ± 6.08 < 0.001
Potassium, mmol/l 4.19 ± 0.80 3.99 ± 0.67 4.55 ± 0.95 4.16 ± 0.75 < 0.001
CRRT, n (%) 716 (14.3) 140 (7.7%) 427 (36.9) 149 (7.3) < 0.001
Vasopressin, n (%) 3462 (69.3) 1120 (61.9) 1006 (86.9) 1336 (65.9) < 0.001
Anticoagulants, n (%) 703 (14.1) 152 (8.4) 330 (28.5) 221 (10.9) < 0.001
Heparin, n (%) 2570 (51.5) 866 (47.9) 552 (47.7) 1152 (56.8) < 0.001
Plasma infusion, n (%) 1259 (25.2) 383 (21.2) 525 (45.4) 351 (17.3) < 0.001
Platelet infusion, n (%) 824 (16.5) 373 (20.6) 354 (30.6) 97 (4.8) < 0.001
APSIII 70.00 (53.00 - 94.00) 63.00 (49.00 - 82.00) 101.00 (82.00 - 120.00) 62.00 (48.00 - 81.00) < 0.001
SOFA score 4.00 (3.00 - 6.00) 4.00 (3.00 - 5.00) 6.00 (4.00 - 9.00) 3.00 (2.00 - 4.00) < 0.001
Hospital length, day 10.22 (5.83 - 19.32) 11.21 (6.79 - 21.47) 10.54 (3.05 - 21.39) 9.59 (5.74 - 16.89) < 0.001
ICU length, day 3.45 (1.83 - 7.75) 3.18 (1.82 - 6.86) 4.65 (1.90 - 10.02) 3.20 (1.82 - 6.95) < 0.001
In-hospital mortality 1,161 (23.3) 296 (16.4) 556 (48.1) 309 (15.2) < 0.001
28-day mortality 1,546 (31.0) 457 (25.3) 647 (55.9) 442 (21.8) < 0.001
90-day mortality 1,766 (35.4) 542 (30.0) 695 (60.1) 529 (26.1) < 0.001
ALT, alanine aminotransferase A; APSIII, acute physiological score; BMI, body mass index; BUN, blood urea nitrogen; CK-MB, creatine kinase isoenzyme; COPD, chronic obstructive 
pulmonary disease; CRP, C-reaction protein; CRRT, continuous renal replacement therapy; DBP, diastolic blood pressure; ICU, intensive care unit; INR, international normalized ratio; 
MCH, mean corpuscular hemoglobin; MCV, mean corpuscular volume; PT, prothrombin time; PTT, partial thromboplastin time; RBC, red blood cell; RDW, erythrocyte distribution 
width; SBP, systolic blood pressure; SOFA, sequential organ failure assessment; ST, aspartate aminotransferase; WBC, white blood cell. *P between the clusters.
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(OR < 1, p < 0.05). However, after variable adjustment, only class 
2 benefited from heparin therapy, which reduced 28-day mortality 
(OR 0.39, 0.30-0.49, p < 0.001) and in-hospital mortality (OR 
0.42, 0.33-0.53, p < 0.001).

DISCUSSION

In this study, we identified three SIC subphenotypes that showed 
distinct clinical and laboratory characteristics by the LCA, and the 
results were also confirmed by K-means clustering. The effects 
of anticoagulants varied by treatment and subphenotypes. Only 
class 2 benefited from heparin therapy, which reduced 28-day 
mortality and in-hospital mortality. These findings have important 

implications to understand the heterogeneity of SIC and inform 
future works to promote optimal anticoagulant therapy across 
subphenotypes. 

The present study confirms previous findings that specific therapies 
confer benefits only in patients with specific sepsis phenotypes.11,21,22 
For example, Joseph et al. identified four sepsis phenotypes with 
different anti-inflammatory responses using 25 bedside variables. 
They analyzed heterogeneous treatment interactions and mortality 
risks among these phenotypes and found that one phenotype had 
a lower mortality rate than other phenotypes when treated with 
combined immunoglobulin G and methylprednisolone.23 Activated 
protein C, a toll-like receptor 3 antagonist, and fluid input had 
different effects on each phenotype.24 In clinical practice, the goal 
of precision medicine is to choose the optimal therapy for each 
patient, for which machine learning-based clustering for optimal 
therapy is an effective method.25,26 Although the present study does 
not fully address the biological or pathophysiological mechanism-
defined endotype of coagulation in sepsis, the findings improve the 
understanding of SIC subphenotypes.

The classification appears to be stable in the present study 
because both the LCA and K-means clustering obtained the same 
optimal number of classes, and the minimum and maximum 
class membership probabilities were 0.89 and 0.98, respectively. 
Our results have some similarities and differences with those of 
a previous study showing that sepsis can be classified into four 
phenotypes only with coagulation features and that rhTM therapy is 
associated with better outcomes only in the phenotype characterized 
by a low platelet count, high fibrin degradation product and 
D-dimer concentrations, and severe dysfunction.11 This study 
also showed that only the phenotype with severe coagulopathy 
and organ dysfunction (Class 2) benefited from heparin therapy; 
however, we aimed to identify the key and common variables of the 
underlying latent phenotypes of SIC using clinical and laboratory 

FIG. 2. t-distributed stochastic neighbor embedding (t-SNE) plot. 
The t-SNE is a dimensionality reduction for graphically simplifying 
dataset. Each dot represents a patient who displayed clusters within 
the dimensionally reduced and scaled down feature space of the 
autoencoder embedding (red, Class 1; green, Class 2; blue, Class 3). 

FIG. 3. Violin plots for the median value of 18 features enrolled in the clustering approach. Top 18 features with the largest differences within the three 
subphenotypes. Class 1 is represented in pink; Class 2, green; and Class 3, blue. 
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TABLE 2. Best Number of Classes by Latent Class Analysis.

Classes AIC SABIC Entropy prob_min prob_max n_min n_max BLRT_p

2 250533.9 250892.3 0.83 0.87 0.97 0.2 0.8 0.01

3 246806.7 247288.9 0.92 0.89 0.98 0.07 0.78 0.01

4 244608.6 245214.5 0.82 0.87 0.97 0.05 0.48 0.01

5 242673.7 243403.5 0.84 0.85 0.95 0.06 0.43 0.01

6 238154.4 239008 0.85 0.85 1 0.01 0.4 0.01

7 240189.2 241166.6 0.84 0.82 0.94 0.03 0.38 0.01

8 234370.6 235471.7 0.85 0.8 1 0.01 0.34 0.01

9 232528.4 233753.3 0.87 0.82 1 0.01 0.42 0.01

10 233624.4 234973.1 0.85 0.8 0.99 0.01 0.29 0.01

AIC, Akaike information criteria; BLTR, bootstrapped likelihood ratio test; SABIC, sample size adjusted Bayesian information criteria.

TABLE 3. Associations Between Anticoagulation and Procoagulation Treatment with in-Hospital and 28-Day Mortality.

28-day mortality

Class 1 Class 2 Class 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Anticoagulants

Unadjusted 2.41 (1.71 - 3.39) < 0.001 0.86 (0.69 - 1.12) 0.263 2.27 (1.68 - 3.01) < 0.001

Adjusted 5.28 (1.41 - 19.71) 0.013 0.72 (0.37 - 1.37) 0.313 5.61 (0.89 - 35.4) 0.067

Heparin

Unadjusted 0.62 (0.50 - 0.77) < 0.001 0.39 (0.30 - 0.49) < 0.001 1.28 (1.04 - 1.59) 0.023

Adjusted 0.62 (0.28 - 1.37) 0.237 0.21 (0.10 - 0.43) < 0.001 1.06 (0.34 - 3.26) 0.926

Plasma infusion

Unadjusted 2.14 (1.68 - 2.73) < 0.001 1.81 (1.43 - 2.29) < 0.001 1.79 (1.38 - 2.31) < 0.001

Adjusted 1.08 (0.45 - 2.58) 0.960 1.62 (0.80 - 3.29) 0.185 0.63 (1.29 - 2.15) 0.460

Platelet infusion

Unadjusted 2.25 (1.77 - 2.88) < 0.001 1.28 (1.00 - 1.66) 0.053 2.22 (1.45 - 3.34) < 0.001

Adjusted 0.49 (0.21 - 1.15) 0.100 0.89 (0.44 - 1.78) 0.732 0.90 (0.22 - 3.66) 0.882

In-hospital mortality

Class 1 Class 2 Class 3

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Anticoagulants

Unadjusted 4.19 (2.95 - 5.95) < 0.001 1.01 (0.78 - 1.30) 0.957 3.91 (2.88 - 5.32) < 0.001

Adjusted 11.06 (2.79 - 43.82) 0.001 0.67 (0.35 - 1.29) 0.230 15.94 (2.14 - 118.85) 0.007

Heparin

Unadjusted 0.70 (0.54 - 0.90) 0.006 0.42 (0.33 - 0.53) < 0.001 1.58 (1.23 - 2.04) < 0.001

Adjusted 0.78 (0.34 - 1.76) 0.538 0.21 (0.10 - 0.43) < 0.001 2.14 (0.52 - 8.78) 0.291

Plasma infusion

Unadjusted 3.06 (2.34 - 4.00) < 0.001 2.10 (1.66 - 2.66) < 0.001 2.59 (1.97 - 3.41) < 0.001

Adjusted 1.37 (0.55 - 3.38) 0.501 1.49 (0.74 - 3.00) 0.267 0.69 (0.18 - 2.72) 0.598

Platelet infusion

Unadjusted 3.09 (2.36 - 4.04) < 0.001 1.43 (1.11 - 1.84) 0.005 3.25 (2.10 - 5.03) < 0.001

Adjusted 0.89 (0.37 - 2.15) 0.802 0.85 (0.43 - 1.70) 0.650 1.43 (0.31 - 6.66) 0.653
Adjusted by age, heart rate, systolic blood pressure, hypertension, diabetes SOFA score, fibrinogen, INR, hemoglobin, platelets, white blood cells, creatinine, lactate, CI, confidence 
interval.
Anticoagulants include argatroban, bivalirudin, and warfarin.
Heparin therapies include heparin, enoxaparin, and fondaparinux.
Plasma infusions include fresh frozen plasma and cryoprecipitate.
Platelet infusions include platelets and thrombocyte suspension.
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variables because we believe that SIC classification does not rely 
solely on coagulation features. This supports that machine-learning 
clustering is effective in identifying the optimal subphenotypes for 
anticoagulant therapy. 

Class 1 was characterized by lower blood cell counts (WBCs, RBCs, 
platelets, and hemoglobin) and can be clinically characterized 
by blood loss rather than by coagulation disorder. However, the 
proportion of class 1 patients undergoing anticoagulant therapy 
was no lower than in those of other two classes. Furthermore, after 
adjustment, anticoagulant therapy was associated with increased 
28-day and in-hospital mortality in Class 1. 

Class 2 was characterized by severe coagulopathy and multiple-
organ dysfunction. Moreover, class 2 had the highest INR, PT, 
PTT, TBIL concentrations, creatinine, lactate, and SOFA and 
SAP III scores and the highest rate of CRRT, vasopressin, and 
anticoagulant therapy; however, this class still had the highest 
mortality rate. This subphenotype resembles cluster dA phenotype 
in the JSEPTIC-DIC trial11 and the δ phenotype in the SENECA 
trial,24 is more likely to have a severe coagulopathy status and 
organ dysfunction, and could benefit from anticoagulant therapy. 

Class 3 was the largest class and was characterized by older age 
and a higher rate of comorbidities, similar to the β-phenotype in the 
SENECA trial.24 The fibrinogen concentration was the highest in 
Class 3. Fibrinogen is a positive acute-phase protein that increases 
in response to systemic inflammation, tissue damage, and various 
cancers.27 Hyperfibrinogenemia during sepsis is due to increased 
fibrinogen and has been recognized as the cause of thrombosis and 
vascular damage.28 

Heparin is a mammalian polysaccharide widely used in the 
treatment of thrombotic disorders in patients with sepsis. Heparin 
exerts anticoagulant effects by binding to lysine residue in 
antithrombin, resulting in irreversible conformational change at the 
arginine-reactive site.29 Previous animal experiments and a meta-
analysis of clinical trials have demonstrated that heparin decreases 
28-day mortality when compared with placebo in sepsis.30,31 
Another meta-analysis revealed that the risk ratio for death was 
1.30 when heparin was compared with other anticoagulants. 
However, the overall effect of heparin remains uncertain.32 These 
studies were performed in patients with sepsis, but not consistently 
in patients with SIC. Our study showed that heparin therapy was 
better than other anticoagulant therapies and was associated with 
reduced mortality only in Class 2. This finding may facilitate the 
identification of patients with SIC who are optimal for anticoagulant 
therapy.

This study has several limitations. First, the subphenotypes were 
derived from the large retrospective MIMIC-IV database; thus, 
the unsupervised clustering approach should be validated in an 
independent population. Second, other coagulation indicators 
(such as D-dimer and thrombin concentrations) and regimens (such 
as procoagulants and antiplatelet drugs) were excluded from the 
analysis because of the high rates of missing data in the database. 

In this study, missing data were also common for some of the 
variables; thus, NOCB, LOCF, and multiple imputations were 
used in the primary analysis. Third, although we tried to classify 
patients with SIC into three subphenotypes, granularity may not 
be sufficiently high enough to support individualized anticoagulant 
therapy. Sepsis is a highly heterogeneous syndrome, and specific 
phenotypes require different anticoagulation regimens. However, 
high granularity would reduce the interpretability and application 
in clinical practice. 

We used data-driven unsupervised machine-learning approaches to 
identify three SIC subphenotypes. In this study, heparin therapy 
only benefited patients with severe coagulopathy and organ 
dysfunction. Thus, identifying distinct phenotypes and determining 
optimal treatments in future trials is warranted.
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