
Background: Autosomal dominant polycystic kidney 
disease (ADPKD) is characterized by multiple, large 
renal cysts and impaired kidney function. Although 
the reason for the development of kidney cysts is un-
known, ADPKD is associated with cell cycle arrest and 
abundant apoptosis of renal tubular epithelial cells. 
Aims: We asked whether serum-soluble TNF-related apop-
tosis-inducing ligand (sTRAIL) might underlie ADPKD.
Study Design: Case-control study. 
Methods: Serum sTRAIL levels were measured in 44 
patients with ADPKD and 18 healthy volunteers. 
The human soluble TRAIL/Apo2L ELISA kit was 
used for the in vitro quantitative determination of 
sTRAIL in serum samples.

Results: Mean serum sTRAIL levels were lower 
in patients with ADPKD as compared to the con-
trol group (446.9±103.1 and 875.9±349.6 pg/mL, 
p<0.001). Serum sTRAIL levels did not differ among 
stages of renal failure in patients with ADPKD. There 
was no correlation between serum sTRAIL levels and 
estimated glomerular filtration rate in patients with 
ADPKD (p>0.05). 
Conclusion: Our results show that ADPKD patients 
have depressed sTRAIL levels, indicating apoptosis 
unrelated to the stage of chronic renal failure. 
Keywords: Serum-soluble TNF-related apoptosis-
inducing ligand, chronic kidney disease, autosomal 
dominant polycystic kidney disease
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Autosomal dominant polycystic kidney disease (ADPKD) 
is a disorder characterized by multiple, large renal cysts and 
impaired kidney function. Although the mechanism involved 
in the pathogenesis of ADPKD is unknown, it is thought to 
involve cellular proliferation, ending in the development of 
multiple and big cysts, modified renal epithelial cell polarity, 
dislocation of Na+-K+ ATPase pump and remodeling of the 
matrix (1,2). The precise mechanism implicated in the patho-

genesis of ADPKD has not been identified. Apoptosis is a 
pathologic feature of ADPKD (3-5).

TNF-related apoptosis-inducing ligand (TRAIL) derives 
from the tumor necrosis factor superfamily and induces apop-
tosis in transformed cells (6,7). TRAIL can stimulate both pro-
apoptotic and anti-apoptotic pathways, but the mechanism by 
which a particular pathway is triggered remains less well under-
stood (8). TRAIL binds to TRAIL-R1, R2, R3, and R4 receptors 
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and a soluble receptor that it is called osteoprotegerin (9-14). 
TRAIL-R1 and R2 are death-inducing receptors, and TRAIL-
R3, -R4, and osteoprotegerin may act as trap receptors (15). 

Although increased levels of apoptosis are observed in hu-
man ADPKD (3-5), data regarding sTRAIL levels in patients 
with chronic renal failure are limited (16). To our knowl-
edge, no previous study evaluated circulating sTRAIL lev-
els in patients with ADPKD. We therefore investigated the 
circulating sTRAIL in patients with ADPKD and the rela-
tionship between serum sTRAIL levels and severity of renal 
failure in these patients.

MATERIALS AND METHODS

The study was approved by the local ethics committee 
and was performed in appropriate with the ethical rules of 
the Declaration of Helsinki. Inform consent was taken from 
all patients. A total of 44 patients with ADPKD (22 males, 
22 females, mean age 56.7±12.1 years) who had been diag-
nosed by modified Ravine criteria and a positive family his-
tory of ADPKD were included in the study, with 18 healthy 
volunteers as a control group (9 male, 9 female, mean age: 
57.8±14.5 years) were included in this study. The healthy 
subjects with comparable gender, age and body mass index 
were enrolled to study as a control group. Subjects with dia-
betes mellitus, obesity, dyslipidemia, coronary artery dis-
ease, cerebrovascular disease, peripheral arterial disease, 
malignancy, smoking history were excluded from the study. 

Glomerular filtration rate (GFR) values were measured 
by dhronic kidney disease epidemiology collaboration 
(CKD-EPI) formulation (17). The patients were classified 
by chronic kidney disease (CKD) stages consequently to 
the Kidney Disease Outcomes Quality Initiative (KDOQI) 
guidelines (18). 

The human soluble TRAIL/Apo2L ELISA kit (ReproT-
ech; New Jersey, USA) was used for the in-vitro quantitative 
determination of sTRAIL in serum samples. All the clini-
cal follow-up markers including blood urea nitrogen, serum 
albumin, creatinine, uric acid, calcium, chloride and C-re-
active protein were also evaluated by clinical biochemistry 
diagnostic laboratory kits. 

Statistical analysis
The results were evaluated statistically using the Statis-

tical Package for the Social Sciences (SPSS Corp.; version 
16.0, Chicago, IL, USA). Continuous variables are shown as 
mean±standard deviation; categorical variables are shown as 
frequency and percentage. Normal distribution was evaluated 
by Shapiro Wilk’s test. According to the presence of normal 

distribution of the parameters, for the analysis of continuous 
variables the Mann-Whitney U test and t-test (independent 
samples t-test) were used. One-way ANOVA and Kruskal 
Wallis tests were used for comparisons of age and sTRAIL 
by stage. Pearson and Spearman’s rho tests were used for cor-
relation analysis. With 95% confidence interval, a p value less 
than 0.05 was considered to be statistically significant.

RESULTS

Mean age was similar in patients with ADPKD and the 
control group (56.7±12.1 and 57.8±14.5 years, p>0.05). 
Mean serum sTRAIL levels were lower in patients with AD-
PKD than control group (446.9±103.1 and 875.9±349.6 pg/
mL, p<0.001) (Table 1). 

In patients with ADPKD, mean hemoglobin level was 
12.7±1.4 g/dL; serum creatinine level was 4.0±3.7 mg/dL; 
serum albumin level was 4.2±0.9 g/dL; C-reactive protein 
level was 1.8±0.5 mg/L; GFR level was 36.1±24.0 mL/min 
(Table 1). 

There was negative correlation between serum sTRAIL 
levels and hemoglobin in patients with ADPKD (r=-0.348, 
p=0.02). There was no correlation between serum sTRAIL 
levels and the other parameters (age, GFR, serum creati-
nine, serum albumin, C-reactive protein) (Table 2). Serum 
sTRAIL levels did not differ with stages of renal failure in 
patients with ADPKD (Table 3).

 ADPKD HV 
 (n=44) (n=18) p

Age (years) 56.7±12.1 57.8±14.5 0.471

Female, No (%) 22 (50%) 9 (50%) 0.955

Male, No (%) 22 (50%) 9 (50%) 0.930

Body Mass Index (kg/m2) 28.21±5.34 27.37±4.31 0.400

Hemoglobin (g/dL) 12.7±1.4 13.9±0.9 0.250

Creatinine (mg/dL) 4±3.7 0.77±0.2 ˂0.001

eGFR (ml/min/1.73m2) 36.1±24 98.1±10.7 ˂0.001

Calcium (mg/dL) 8.9±2.3 9.37±0.39 0.095

Phosphate (mg/dL) 4.51±1.7 4.0±0.67 0.089

Parathyroid hormone (pg/mL) 162.3±268.9 47.7±12.3 ˂0.001

Albumin (g/dL) 4.2±0.9 4.6±0.28 0.150

Serum sTRAIL (pg/mL) 446.9±103.1 875.9±349.6 ˂0.001

HV: healthy volunteers; ADPKD: autosomal dominant polycystic kidney disease; eGFR: 
estimated Glomerular filtration rate; sTRAIL: soluble TNF-related apoptosis inducing 
ligand

TABLE 1. Characteristics of patients with ADPKD and HV
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DISCUSSION

Autosomal dominant polycystic kidney disease is a genetic 
disease that presented by the development of many cysts in the 
kidney and other organs. The certain mechanism involved in 
the pathogenesis of ADPKD has not been determined. There 
have been major advances in the study of the pathophysiol-
ogy of cyst formation and the progression of renal failure in 
ADPKD (2). One of those potential factors in cyst formation 
and loss of non-cystic tubules leading to renal failure in AD-
PKD is apoptosis. Increased levels of apoptosis are observed 
in human ADPKD (3-5) and experimental models of ADPKD 
(19-22). Furthermore, apoptosis has been reported in kidneys 
of humans with ADPKD regardless of renal function (5).

Cell death via apoptosis through the stimulation of specific 
intracellular pathways is a stimulation response of cells to af-
fected microenvironments (22,23). Lethal cytokines, they are 
members of the TNF superfamily, stimulate decease receptors 
on the cell surface with consequent stimulation of caspases, 
central activators, and effectors of apoptosis (23-25). The 
apoptotic process is regulated by a host of checks and bal-
ances with a many of positive and negative factors (26). The 

TNF-α is essential for induction of cytokine cascade which 
composing immune response. Also, TNF-α participates in im-
mune response, inflammation and wound healing. The role 
and molecular function of the TRAIL and its receptors’ system 
in the immune system has been extensively studied and vari-
ous results were presented (8-14,27). 

Vascular calcification and endothelial dysfunction are fre-
quent in patients with chronic kidney disease. Accumulating 
experimental and clinical evidence suggests that TRAIL is as-
sociated with atherosclerosis. The circulating TRAIL level is 
positively associated with endothelial function, and TRAIL 
deficiency results in accelerated calcification in atherosclero-
sis (28-30).

Although increased levels of apoptosis are observed in hu-
man ADPKD, to our knowledge, no previous study has evalu-
ated circulating sTRAIL levels in patients with ADPKD. In 
this study, we assessed the serum levels of sTRAIL as a mark-
er of overall apoptotic activity in ADPKD. Serum sTRAIL 
levels were lower in patients with ADPKD than control group. 

Data regarding sTRAIL levels in patients with CKD are 
limited (16). Liabeuf et al. (16) reported that patients undergo-
ing hemodialysis had significantly lower serum sTRAIL lev-
els when compared with patients with earlier stages of CKD, 
and lower serum STRAIL levels had been related to increased 
mortality in CKD patients. Furthermore, they found no cor-
relation between serum sTRAIL and estimated GFR. Serum 
sTRAIL levels were not different between stages of CKD. 
This different result in patients with undergoing hemodialy-
sis may be related etiological factor of chronic renal failure 
and blood sample collection time (predialysis or after dialysis 
period). Our study population was homogenous etiology (AD-
PKD) of CKD and sample for blood collection in pre-dialythic 
period. In addition, we did not find any correlation between 
sTRAIL and the estimated GFR, similarly their study. 

Clinical presentation of ADPKD differs from the other CKD 
causes with less frequent occurrence of anemia due to higher 
serum erythropoietin levels. Recent studies indicate that in 
ADPKD patients, proximal tubuli is the main site for erythro-
poietin production and erythropoietin is significantly enriched 
in cysts of proximal tubular origin (31,32). Both in vitro and in 
vivo studies have clearly documented that TRAIL shows regu-
latory functions in hematopoiesis under normal and pathologi-
cal conditions (33-36). Choi reported that negative correlation 
between STRAIL and hemoglobin levels in healthy adults 
(34). We also found a negative correlation between sTRAIL 
and hemoglobin levels in patients with ADPKD. 

Our study has several limitations. First, the sample size 
of our cohort (especially for each stage of CKD) was rela-
tively small. Second, we relied on single measurement serum 
sTRAIL levels instead of serial monitoring. Third, we did 

                                   Serum sTRAIL (pg/mL)

 r p 

Age (years) 0.175  0.445

Body Mass Index (kg/m2) 0.150  0.550

Hemoglobin (g/dL) -0.348  0.02

C-Reactive Protein (mg/L) 0.059  0.940

Creatinine (mg/dL) 0.135  0.750

eGFR(ml/min/1.73m2) 0.127  0.720

Calcium (mg/dL) 0.120  0.355

Phosphate (mg/dL) 0.025  0.625

Parathyroid hormone (pg/mL) 0.190  0.945

Albumin (g/dL) 0.155   0.150

ADPKD: autosomal dominant polycystic kidney disease; eGFR: estimated Glomerular 
filtration rate; sTRAIL: soluble TNF-related apoptosis inducing ligand

TABLE 2. Correlation between serum sTRAIL levels, demographics and 
laboratory parameters in patients with ADPKD

 Stage II Stage III Stage IV Stage V 
 N=19 N=5 N=4 N=16 p

Age (year) 56.5±13.6 60.1±11.9 57.3±9.7 54.5±11.4 0.565

sTRAIL (pg/mL) 447.9±104.6 452.1±110.5 439.8±68.6 436.7±103.5 0.750

HV: healthy volunteers; ADPKD: autosomal dominant polycystic kidney disease; eGFR: estimated 
Glomerular filtration rate; sTRAIL: soluble TNF-related apoptosis inducing ligand

TABLE 3. Age and sTRAIL in patients with ADPKD
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not analyze the cellular (for example cystic lesion) levels of 
sTRAIL. Therefore, new studies that have more sample siz-
es are necessary for this purpose. In conclusion, our results 
show that ADPKD patients have depressed sTRAIL levels 
as an indicator of apoptosis which was not related to stage 
of CKD. 
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