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Background: Polycystic ovary syndrome (PCOS) has a significant impact 
on endocrine metabolism, reproductive function, and mental health in 
women of reproductive age. Ultrasound remains an essential diagnostic 
tool for PCOS, particularly in individuals presenting with oligomenorrhea 
or ovulatory dysfunction accompanied by polycystic ovaries, as well as 
hyperandrogenism associated with polycystic ovaries. However, the 
accuracy of ultrasound in identifying polycystic ovarian morphology 
remains variable.

Aims: To develop a deep learning model capable of rapidly and accurately 
identifying PCOS using ovarian ultrasound images.

Study Design: Prospective diagnostic accuracy study.

Methods: This prospective study included data from 1,751 women with 
suspected PCOS who presented at two affiliated hospitals at Central 
South University, with clinical and ultrasound information collected and 
archived. Patients from center 1 were randomly divided into a training 
set and an internal validation set in a 7:3 ratio, while patients from center 
2 served as the external validation set. Using the YOLOv11 deep learning 
framework, an automated recognition model for ovarian ultrasound 

images in PCOS cases was constructed, and its diagnostic performance 
was evaluated.

Results: Ultrasound images from 933 patients (781 from center 1 and 152 
from center 2) were analyzed. The mean average precision of the YOLOv11 
model in detecting the target ovary was 95.7%, 97.6%, and 97.8% for the 
training, internal validation, and external validation sets, respectively. For 
diagnostic classification, the model achieved an F1 score of 95.0% in the 
training set and 96.9% in both validation sets. The area under the curve 
values were 0.953, 0.973, and 0.967 for the training, internal validation, 
and external validation sets respectively. The model also demonstrated 
significantly faster evaluation of a single ovary compared to clinicians 
(doctor, 5.0 seconds; model, 0.1 seconds; p < 0.01).

Conclusion: The YOLOv11-based automatic recognition model for 
PCOS ovarian ultrasound images exhibits strong target detection and 
diagnostic performance. This approach can streamline the follicle 
counting process in conventional ultrasound and enhance the efficiency 
and generalizability of ultrasound-based PCOS assessment.

 Baihua Zhao1,2,  Lieming Wen2,  Yunxia Huang3,  Yaqian Fu4,  Shan Zhou4,  Jieyu Liu2,  Minghui Liu2, 
 Yingjia Li1

INTRODUCTION

Polycystic ovary syndrome (PCOS) significantly impacts endocrine 
metabolism, reproductive function, and mental health in women 
of reproductive age.1,2 Between 1990 and 2023, the standards for 
diagnosing and treating PCOS have been continuously revised.3-9 

Due to variations in regional populations and the complex nature of 
the disorder10, diagnosing and managing PCOS remains a persistent 
challenge in gynecology and endocrinology.

Chinese gynecological experts have reported that as many as 70% of 
PCOS cases go undiagnosed, and over one-third of patients experience 
delayed diagnoses.8 The most recent international and Chinese PCOS 
guidelines6,8,9 emphasize the importance of performing ultrasound 
evaluations of polycystic ovarian morphology (PCOM) in suspected 
PCOS cases that do not represent both oligomenorrhea or ovulatory 
dysfunction (O) and hyperandrogenism (H) simultaneously. A large-
scale investigation into fertility patterns among Chinese women.11-14 
found that in national epidemiological surveys conducted in 2010 
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and 2020, about 52% of PCOS patients in China had either the O 
+ PCOM or H + PCOM subtypes11,12, compared to approximately 
30.2% in Europe and the United States of America (USA).15 The 
study also indicated that by 2020, the prevalence of PCOS among 
Chinese women of reproductive age had risen by nearly 65% over 
the past decade, primarily due to a marked increase in the O + 
PCOM subtype.14 

At present, there is no global consensus on the most reliable 
specificity indicators for the ultrasound-based diagnosis of 
PCOM6,15,16, and the diagnostic accuracy among ultrasound 
practitioners remains variable. The accuracy of follicle counting 
using 2D versus 3D ultrasound also remains a subject of ongoing 
debate.15,16 A meta-analysis Pea et al.16 demonstrated substantial 
variation in the diagnostic accuracy of PCOM based on differing PCOS 
diagnostic criteria and regional populations. While international 
PCOS guidelines6,9 recommended the use of ultrasound transducers 
with frequencies ≥ 8 MHz, Pea et al.16 found that after stratifying 
imaging techniques by transducer frequencies < 8 MHz and ≥ 8 MHz, 
diagnostic accuracy remained unchanged. This may be attributed 
to the limited consistency in traditional follicle counting methods 
among ultrasound observers. Pea further reported16 that 3D 
ultrasound may not necessarily offer more accurate assessments of 
PCOS; in fact, it is time-intensive and may lead to an underestimation 
of follicle count, aligning with findings from Vanden et al.’s17 study. 
In addition, the most recent international guidelines9 formally 
incorporated serum anti-Müllerian hormone (AMH) levels in 
defining adult PCOM. However, a standardized threshold for AMH 
in diagnosing PCOM has not yet been established.18,19 With the 
growing integration of artificial intelligence (AI) into medicine, AI 
has been applied in numerous studies to assist in the diagnosis 
of PCOS.20-23 Suha and Islam22 introduced an enhanced machine 
learning classification approach to differentiate ultrasound images 
of PCOS and non-PCOS (NPCOS) cases, achieving an accuracy rate of 
99.89%. However, this study introduced both transabdominal and 
intracavitary ultrasound images, which could introduce classification 
bias, as current guidelines do not recommend transabdominal 
ultrasound for evaluating PCOS. To date, related research in China 
remains limited. Lv et al.24 proposed a deep learning algorithm for 
PCOS-assisted detection based on changes observed in the sclera 
of whole-eye images in females, achieving an accuracy of 92.9%. 
However, the clinical relevance of these findings is limited.

Globally, most AI research on PCOS is based on small sample sizes, 
with a lack of large-scale, multicenter studies. Moreover, many of 
the ultrasound images used in previous studies were sourced from 
public imaging databases, which varied in imaging techniques and 
standards, raising concerns about the reliability of the results.

To address this, and to streamline ultrasound-based PCOS evaluation 
while enhancing its applicability and efficiency, we conducted the 
first large-scale prospective study among East Asian women to 
develop a deep learning model capable of rapidly and accurately 
identifying PCOS ovaries in ultrasound images.

MATERIALS AND METHODS

Ethical approval

This study was approved by the Clinical Research Ethics Committees 
of the Second Xiangya Hospital (approval number: 2019-036; 
date: 06.03.2019) and the Third Xiangya Hospital of Central South 
University (approval number: 2019-066; date: 06.06.2019). All 
patients provided written informed consent.

Research participants

This prospective study included female patients who attended the 
gynecology and endocrinology clinics at the Second Xiangya Hospital 
(center 1) and the Third Xiangya Hospital (center 2) of Central South 
University between November 2019 and December 2024.

Inclusion criteria were as follows: women of reproductive age (20-
44 years) suspected of having PCOS, presenting with menstrual 
irregularities, infertility, abnormal weight gain or obesity, H 
(including clinical signs), and an ultrasound diagnosis of PCOM.

Exclusion criteria were as follows: ① use of hormone-containing 
medications (including oral contraceptives) within the past 3 
months; ② pregnancy at the time of screening; ③ coexisting 
tumors in the uterus, ovaries, or other sites; ④ incomplete clinical 
information; or ⑤ poor-quality ultrasound images of both ovaries, 
or the presence of a corpus luteum or follicles measuring 10 mm 
or more in diameter. Poor-quality ultrasound images refer to those 
in which the ovarian outline and internal structure could not be 
clearly identified by the ultrasound physician.

The Rotterdam criteria were used as the diagnostic gold standard for 
PCOS, as the Chinese PCOS guidelines have consistently been based 
on these criteria.4,7,8 The final clinical diagnosis for each patient was 
recorded.

Clinical and ultrasound data collection

The following patient characteristics were recorded: age, height (cm), 
weight (kg), body mass index (BMI), menstrual history, reproductive 
history, signs of H, and history of other diseases. Levels of sex 
hormones and thyroid hormones were also documented.

The ultrasound machines used at the two centers included 
SonoScape P60 (SonoScape, Shenzhen, China), Mindray Resona 
R7 (Mindray Medical, Shenzhen, China), GE E8 (GE Healthcare, 
Milwaukee, WI, USA), GE E10 (GE Healthcare, Milwaukee, WI, USA), 
and Voluson S6 (GE Healthcare, Milwaukee, WI, USA). The preset 
instrument parameters were as follows: intracavitary ultrasound 
frequency range, 4.0-9.0MHz; imaging depth, 7-8 cm; fan angle 
range, 20°-180°; speckle suppression, level 4; spatial compounding, 
level 2; mechanical index, < 1.0; and thermal index, < 1.0.

Intracavitary ultrasound examinations, image acquisition, and 
ovarian data annotation were conducted by gynecologic ultrasound 
physicians with over 10 years of experience at each center-three 
physicians from center 1 and two from center 2. Before the study 
began, 20 ovarian ultrasound images were randomly selected from 
each center’s ultrasound workstation, comprising 20 PCOS and 20 
NPCOS images in total. The physicians responsible for initial image 
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selection were not involved in subsequent image acquisition or 
annotation. The five ultrasound doctors diagnosed these 40 ovarian 
images for PCOM or non-PCOM. Inter-observer agreement among 
the five physicians was assessed, yielding a kappa value of 0.91 (95% 
confidence interval, 0.86-0.97). These 40 images used for consistency 
testing were excluded from the main study.

During data collection, each ovary was diagnosed for PCOM based on 
the gold standard by the ultrasound physician. Cases with uncertain 
PCOM diagnoses were documented. If high-quality ultrasound 
images were available for both ovaries, both were included; if only 
one ovary had a high-quality image, only that side was retained. For 
each ovary, the two-dimensional ultrasound image displaying the 
highest number of follicles was stored. To capture the maximum 
number of follicles within one section, one to three images per 
ovary were stored from different angles. If multiple-angle images 
showed substantial overlap, the redundant overlapping images 
were excluded. All ultrasound images from the same patient were 
acquired during the same session, with no variation in imaging 
conditions during acquisition. 

Data structure and partition

Patients from center 1 were assigned to the training and internal 
validation sets using stratified random sampling at a 7:3 ratio. 
Patients from center 2 were included in the external validation 
set. All ovarian images were allocated to the training, internal 
validation, or external validation sets based on the patient-level 
assignment described above. No patient and their corresponding 
images appeared in more than one dataset. 

Analysis of image sample similarity and independence

To assess the similarity and independence of the ovarian ultrasound 
image samples, the grayscale values and histograms of the images 
were extracted and analyzed. The normalized structural similarity 
index (SSIM) and mutual information (MI) were calculated for 
each pair of images to evaluate their degree of similarity and 
correlation. Statistical differences in grayscale histograms were used 
to demonstrate the independence of the image samples. 

Development of a deep learning model for automatic PCOS 
recognition

In this study, we utilized YOLOv11, an end-to-end object detection 
model based on convolutional neural networks, as the modeling 
framework. The source code for YOLOv11 is publicly available on 
GitHub at https://github.com/ultralytics/ultralytics. The technical 
workflow for model development based on YOLOv11 is illustrated 
in Figure 1.

Preprocessing of modeling data: Initially, all original ovarian 
ultrasound images in the training set underwent manual or 
automated preprocessing to enhance data diversity. Subsequently, 
target-specific annotations-including bounding boxes and category 
labels-were applied. The preprocessed training data were then 
divided, using stratified random sampling, into three subsets: a 
model training set, a model testing set, and a model validation 
set. The validation set was used to support early stopping and fine-
tuning of parameters to prevent model overfitting.

Model architecture: The YOLOv11 architecture is composed of 
three main components: a backbone network, a neck network, 
and a head network, which work together to perform object 
detection. The backbone network extracts fundamental features 
from the input image and progressively downsamples it through 
convolutional and pooling layers to generate multiscale feature 
maps. The neck network integrates and processes these multiscale 
features, applying operations such as upsampling, downsampling, 
and feature concatenation to enhance the representation capacity 
of the features. This allows the model to better capture object 
characteristics across varying scales before passing them to the 
head network for prediction. The head network is responsible 
for outputting the predicted category and the coordinates of 
the bounding box for each target. It contains two branches: a 
classification branch, which estimates the probability that the 
detected object is PCOS or NPCOS, and a regression branch, which 
predicts the bounding box coordinates of the target.

Defining the loss function: The appropriate loss function was selected 
based on the nature of the task, specifically the relationship between 

FIG. 1. Technology roadmap for modelling in YOLOv11
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the true and predicted categories. In this study, a multitask loss function 

was employed, which could include classification loss, regression loss, 

confidence loss, VariFocal loss, and bounding box loss. In addition, 

each predicted bounding box was matched to its corresponding ground 

truth using a one-to-one intersection over union (IoU) threshold. When 

the IoU value between a predicted box and the ground truth box was ≥ 

0.7, it was considered a correct prediction. 

Optimizer selection and learning rate settings: The AdamW 

optimizer was chosen for its ability to mitigate overfitting by 

adaptively adjusting the learning rates of individual parameters. 

The initial learning rate was set at 0.0001, and a cosine annealing 

strategy was employed to adjust it during training. Mixed precision 

training and extended warm-up phases were also used to improve 

the model’s convergence speed. 

Model training, testing, and validation

The model was trained to detect the target ovary in ultrasound 

images and to classify cases as PCOS or NPCOS. The process involved 

multiple iterations of training, testing, and validation, during which 

the loss function was calculated and gradients were computed 

using backpropagation. The optimizer then updated the model 

parameters accordingly. After training was completed, the ovarian 

ultrasound images from both the internal and external validation 

sets were input into the trained model using the same set of 

parameters for performance evaluation.

Comparison of recognition time between the model and a 
senior ultrasound physician for PCOM diagnosis

A senior ultrasound physician at center 1 performed intracavitary 

ultrasound scans on the ovaries of 20 additional patients suspected 

of having PCOS, recording the time taken to scan each ovary and 

diagnose PCOM. Correspondingly, the two-dimensional ultrasound 

image of each ovary containing the highest number of follicles was 

input into the YOLOv11 model, and the model’s recognition time for 

each ovary was recorded.

Statistical analysis

Statistical analyses were conducted using SPSS version 29.0 and Python 
version 3.8.3. Inter-observer agreement was evaluated using Fleiss’ 
Kappa. For variables with non-normal distributions, the median 
and interquartile range were used for description; for variables with 
normal distributions, the mean and standard deviation were used. 
The Mann-Whitney U test was applied for comparisons involving 
continuous variables. A single-sample t-test was used for data with 
a normal distribution, while the single-sample rank sum test was 
used for non-normally distributed data (p < 0.05 was considered 
statistically significant). The SSIM ranged from -1 to 1, with a mean 
value above 0.8 indicating a high degree of overall image similarity. 
MI ranged from 0 to 1, and a mean value above 0.5 indicated 
substantial overall image dependency. Histogram differences were 
analyzed using the chi-squared test of homogeneity, and the chi-
squared statistic (chi-squared distance) was calculated. For multiple 
comparisons involving fewer than 10 tests, the Bonferroni correction 
was applied to adjust the significance level (original α = 0.05, adjusted 
α = 0.0167), with p < 0.0167 indicating statistical significance. For 
more than 10 comparisons, the Benjamini-Hochberg correction 
was used [false discovery rate (FDR) < 0.05], and results with an 
FDR-adjusted q-value < 0.05 were considered significant. Model 
performance was evaluated by calculating accuracy, precision, recall, 
F1 score, and mean average precision (mAP). A confusion matrix was 
generated, and the area under the curve (AUC) was computed to 
evaluate model effectiveness. 

Code availability

The model code is accessible at http://github.com/LittleStoneHouse/
YOLOv11-.git.

RESULTS

General results

This study collected data from 1,751 female patients with clinically 
suspected PCOS, comprising 1,451 patients (82.9%) from center 
1 and 300 patients (17.1%) from center 2. Of these, 933 patients 
(53.3%) were ultimately included in the analysis-781 from center 
1 and 152 from center 2-while 818 patients (46.7%) were excluded 
(Figure 2).

FIG. 2. Inclusion of patients from two centers.
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The 933 included patients ranged in age from 20 to 44 years. Their 
general characteristics are presented in Table 1. No significant 
differences were observed between the two centers in terms of age, 
height, weight, BMI, age at menarche, or history of pregnancy and 
childbirth (p > 0.05). However, a significant difference was found in 
the average number of days in the menstrual cycle between the two 
centers (p = 0.030).

Among the 781 patients from center 1, 365 (46.7%) were diagnosed 
with PCOS, while 416 (53.3%) were diagnosed with NPCOS. In center 
2, 76 out of 152 patients (50.0%) were diagnosed with PCOS, and the 
remaining 76 (50.0%) were diagnosed with NPCOS. The diagnostic 
criteria and population distribution details are shown in Figure 3.

Patient and image allocations to the training set, internal 
validation set, and external validation set

Of the 781 patients enrolled from center 1, 547 (70%) were assigned 
to the training set and 234 (30%) to the internal validation set 
through randomization. All 152 patients from center 2 comprised 
the external validation set (Table 2). 

In center 1, 123 patients (29 in the training set and 94 in the internal 
validation set) contributed only one ovarian ultrasound image 
each, as the contralateral ovarian images were excluded due to 

poor quality. A total of 587 patients (448 in the training set and 
139 in the internal validation set) had two usable images, and 71 
patients (70 in the training set and 1 in the internal validation set) 
had three images included. In center 2, 92 patients provided only 
one ovarian ultrasound image, with the corresponding contralateral 
images excluded due to poor quality, while 60 patients contributed 
two images (Table 2). Overall, 1,722 ovarian ultrasound images were 
included, consisting of 1135 images (65.9%) in the training set, 375 
images (21.8%) in the internal validation set, and 212 images (12.3%) 
in the external validation set.

Analysis results of the similarity and independence of the 
image samples

For patients in both centers with two or three ovarian ultrasound 
images, the mean SSIM values were significantly below 0.8 (p 
< 0.001), and the mean MI values were significantly below 0.5 
(p < 0.001), indicating low overall structural similarity and low 
dependency between each pair of ovarian images. The chi-squared 
distance of the grayscale histogram was significantly greater than 
0 (p < 0.001), demonstrating statistical differences in the grayscale 
pixel distributions of the ovarian images when compared pairwise 
(Table 3).

TABLE 1. General Characteristics of the Patients in the Two Centers.

Characteristic
Center 1
(n=781)

Center 2
(n=152) Test value p value

Age (year) 28 (24, 28) 29 (23, 24) Z = -0.677 0.499

Height (cm) 160 (156, 164) 159 (156, 162) Z = -1.641 0.101

Weight (kg) 57.5 (53, 63) 57.8 (54, 63) Z = 0.210 0.984

BMI 22.5 (21.4, 24.0) 22.7 (21.7, 24.2) Z = 1.583 0.113

Age of menarche (year) 13 (13,13) 13 (12,13) Z = -1.453 0.146

Average menstrual cycle (days) 39 (30, 48) 35 (30, 45) Z = -2.168 0.030

Gravidity 0 (0, 2) 0 (0, 2) Z = 1.147 0.251

Parity 0 (0, 1) 0 (0, 1) Z = 1.061 0.288

BMI, body mass index = Weight (kg)/Height(m)2; non-normal distribution variables are described by median and interquartile ranges.

FIG. 3. (a, b) Diagnostic items and population distributions of PCOS and NPCOS patients. The patients in center 1 (a). The patients in center 2 (b). 
PCOS, polycystic ovary syndrome; NPCOS, non-polycystic ovary syndrome; O, oligomenorrhea/ovulation disorder; H, hyperandrogenism; P, polycystic ovarian morphology; AUB, 

abnormal uterine bleeding; POI, premature ovarian insufficiency; PDF, premature ovarian failure. *Ultrasound doctors determined the absence of  PCOM and those whose PCOM could 

not be fully determined. # Individuals with AUB caused by pituitary, thyroid, adrenal, or kidney diseases.
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In pairwise comparisons of image samples, all multiple tests in both 
centers (587 in center 1 and 60 in center 2) revealed statistically 
significant differences before and after test level adjustment (FDR 
threshold = 0.05, q < 0.05), confirming substantial differences in 
the histogram distributions of each pair of ovarian images. The 
median and interquartile range of Cramér’s V effect size were 0.37 
(0.33, 0.40) in center 1 and 0.33 (0.31, 0.40) in center 2, respectively. 

For comparisons involving three image samples, results from 71 
tests in center 1 showed statistically significant differences (p < 
0.05), indicating that the histogram distributions of the three 
ovarian images per patient varied significantly. Similarly, 213 
pairwise comparisons also showed statistical differences (p < 0.0167) 
before and after correction, supporting the presence of significant 
differences in histogram distributions. The median to interquartile 
range of Cramér’s V effect size was 0.35 (0.30, 0.39).

Modeling evaluation results of the YOLOv11 model

Throughout training, the values of the model’s various loss functions 
progressively decreased, while the performance metrics such as 
accuracy, recall, and mAP steadily improved, indicating good model 
convergence. According to the precision-recall curve, the model 
achieved an mAP of 95.7% at an IoU threshold of 0.5, with category-
specific mAPs of 97.2% for PCOS and 94.1% for NPCOS (Figure 4a). 
The corresponding diagnostic performance metrics are presented 
in Table 4.

Performance evaluation results of the YOLOv11 model on 
internal and external validation sets

The model achieved automatic diagnostic accuracies of 97.3% 
(365/375) on the internal validation set and 96.7% (205/212) on the 
external validation set. In the internal validation set, the model 
reached an mAP of 97.6% at an IoU threshold of 0.5, with mAPs 
of 97.5% for PCOS and 97.8% for NPCOS (Figure 4b). In the external 
validation set, the mAP was 97.8% at an IoU threshold of 0.5, with 
mAPs of 98.5% and 97.1% for PCOS and NPCOS, respectively (Figure 
4c). Related diagnostic performance data are detailed in Table 4. 

Furthermore, in the internal validation set, 2 patients diagnosed 
with PCOS showed suspected negative PCOM results, and 16 patients 
with NPCOS showed suspected PCOM. In the external validation set, 
five NPCOS patients had suspected PCOM. The model accurately 
identified the ovarian images for all 23 of these cases. 

Error analysis of the YOLOv11 model in the internal and 
external validation sets

The confusion matrices for both the internal and external validation 
sets are presented in Figure 5.

In both datasets, the model generated a small number of false 
positive and false negative results when identifying the target 
ovary, primarily involving areas of the image background. Detailed 
analysis indicated that these errors were mainly due to suboptimal 
image quality-for example, when the ovary’s brightness was either 
too similar to or too different from that of the background.

TABLE 2. Distribution of the Patients and Ultrasound Images in the Training Set and the Internal and External Validation Sets.

Sets Diagnosis
No. of 
patients

No. of patients with 
1 image*

No. of patients 
with 2 images#

No. of patients with 
3 images&

Total No. of 
images

Training (center 1) PCOS 257 5 184 68 577

NPCOS 290 24 264 2 558

Internal validation (center 1) PCOS 108 36 71 1 181

NPCOS 126 58 68 0 194

External validation (center 2) PCOS 76 39 37 0 113

NPCOS 76 53 23 0 99

Total 933 215 647 71 1722

PCOS, polycystic ovary syndrome; NPCOS, non-polycystic ovary syndrome; No., number.
After storing 1-3 images per ovary and removing overlapping and unclear images:
*Only included one image of one ovary (left or right);
#Included one image of each ovary (left and right);
&Included two images in one ovary and one image in the other ovary. 

TABLE 3. Results of Similarity and Dependency Analysis for the Images in Two Centers.

Indicators

Center 1 Center 2
Comparisons of two samples
(60 pairs of images)

Comparisons of two samples
(587 pairs of images)

Comparisons of three samples in pairs
(213 pairs of images)

SSIM 0.48 (0.31, 0.62)* 0.33 (0.22, 0.54)* 0.48 ± 0.14#

MI 0.28 (0.19, 0.34)* 0.19 (0.16, 0.35)* 0.26 (0.18, 0.35)*

Chi2 2.39 (2.18, 3.28)* 2.45 (1.35, 3.33)* 2.16 (1.11, 3.06)*

SSIM, structural similarity index; MI, mutual information; Chi2, Chi-square distance. Normal distribution variables are described by mean and standard deviation. 
Non-normal distribution variables are described by median and interquartile ranges. *: single sample rank sum test, p < 0.001; #: single sample t-test, p < 0.001.
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In terms of classification and diagnosis of the target ovary, there 
was one missed detection and one misclassification among the 194 
NPCOS images in the internal validation set. Within the 181 PCOS 
images from the same set, one image was not detected, and eight 
were misclassified. In the external validation set, 3 of the 99 NPCOS 
images were not recognized as the target, and 3 were misclassified. 
Among the 113 PCOS images, four were misclassified. The primary 

factors contributing to classification errors included indistinct 
ovarian outlines and internal structures, presence of uterine or pelvic 
blood vessels adjacent to the ovaries, follicle diameters approaching 
10 mm, and large central regions of the ovary exhibiting strong 
stromal echogenicity. Representative examples of these errors are 
illustrated in Figure 6.

TABLE 4. Performance Indicators of the YOLOv11 Model for the Automatic Recognition and Diagnosis of PCOS in the Training Set and the Internal 
and External Validation Sets.

Sets Acc % Rec % Pre % F1-score % mAP AUC (95% CI)

Training 95.3 95.0 95.0 95.0 95.7 0.953 (0.936-0.969)

Internal validation 97.3 95.0 99.4 96.9 97.6 0.973 (0.953-0.992)

External validation 96.7 96.5 97.3 96.9 97.8 0.967 (0.939-0.995)

PCOS, polycystic ovary syndrome; Acc, accuracy; Rec, recall rate; Pre, precision; mAP, mean average precision; AUC, area under the curve; CI, confidence interval.

FIG. 4. (a-c) Precision-recall curves of YOLOv11. The precision-recall curve for modelling (a). The precision-recall curve for internal validation (b). The 
precision-recall curve for external validation (c). 
NPCOS, non-polycystic ovarian syndrome; PCOS, polycystic ovarian syndrome; mAP, mean average precision.
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Comparison of recognition and diagnosis time between the 
model and a senior ultrasound physician

Among 20 patients with suspected PCOS (9 diagnosed with PCOS and 
11 with NPCOS), a total of 40 ovarian images were analyzed (18 from 
PCOS and 22 from NPCOS cases). The median time taken by senior 
physicians to evaluate each ovary was approximately 5.0 (4.0, 6.0) 
seconds, while the model required about 0.1 seconds per ovary. The 
time difference between the two groups was statistically significant 
(p < 0.01).

DISCUSSION

Awareness of the adverse health impacts of PCOS is growing among 
women. Ultrasound remains the primary imaging modality for 
gynecological assessments, though its diagnostic accuracy for 
PCOS can vary. In this study, a deep learning model was developed 
to analyze ultrasound images and enable rapid and accurate 
identification of PCOS-related ovarian features. 

This study is the first large-scale prospective study using ultrasound 
images of PCOS in East Asian women, with rigorous inclusion and 
exclusion criteria applied to samples from two distinct centers. The 
general clinical characteristics of patients from both centers were 

comparable. In addition, since the ovaries are symmetrical organs 
in females, the final analysis included bilateral ovarian ultrasound 
images. Given this anatomical feature, the structural similarity 
and dependence between multiple images from the same patient 
were assessed prior to model training. These similarities and 
dependencies were found to be low, with no statistically significant 
correlations between images, thereby ensuring the methodological 
rigor and reliability of the model’s development.

Cheng and Mahalingaiah25 created and evaluated two machine 
learning algorithms using 39,093 ultrasound reports from 25,535 
women to categorize PCOM, achieving accuracies of 97.6% and 
96.1%, respectively. The author emphasized that further work in 
PCOS automation should focus on direct feature extraction from 
original ultrasound images. Similarly, Nsugbe26 developed an AI-
based decision support system for early PCOS diagnosis using data 
from the publicly available Kaggle database. This dataset included 
364 NPCOS and 177 PCOS patients, with 41 features spanning 
metabolic, imaging, hormonal, and biochemical data. Ten machine 
learning algorithms were compared, and the highest-performing 
model achieved 93% accuracy.

Our YOLOv11 model effectively enhances the detection of small 
objects in images using anchor-free technology, making it well-

FIG. 6. (a-d) Visual examples of error cases in the validation sets. An ovarian ultrasound image of a PCOS patient with relatively blurry ovarian outlines and 
internal structures (a). An ovarian ultrasound image of a PCOS patient with uneven image brightness (b). An unrecognized ovarian image of a PCOS patient 
with uterine and pelvic blood vessels appearing near the ovary (c). An ovarian image with recognition error in a PCOS patient for the follicle diameters 
close to 10 mm.
PCOS, polycystic ovarian syndrome.

FIG. 5. (a, b) The confusion matrices of the model. The confusion matrix for internal validation (a). The confusion matrix for external validation (b).
NPCOS, non-polycystic ovarian syndrome; PCOS, polycystic ovarian syndrome.
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suited for this study. The ultrasound images were obtained through 
multiple ultrasound instruments, contributing to the diversity of 
the dataset. The training process for the model was stable, and 
the training and validation results were favorable. The model 
demonstrated high robustness and generalizability.

Both the training set and the internal and external validation sets 
for the model demonstrated good AUCs (0.953, 0.973, and 0.967, 
respectively). The recall rates were high in all the sets (95.0%, 95.0%, 
and 96.5%), indicating that the model had strong sensitivity to PCOS 
cases and a low likelihood of missed diagnoses. The model obtained 
high F1 scores in all sets (95.0%, 96.9%, and 96.9%), which indicated 
a well-maintained balance between accuracy and recall. This 
demonstrates the model’s ability to maintain a high true positive 
rate and a low false positive rate. In addition, the mAPs of the model 
were good across all sets (95.7%, 97.6%, and 97.8%), indicating that 
the model’s effectiveness in accurately detecting target location and 
category recognition, which is particularly important for clinical 
applications.

Ultrasound images of poor quality were excluded from this study. 
These were images in which the outline and internal structures of the 
ovary were not clearly distinguishable to the ultrasound physician. 
Contributing factors to poor image quality included obesity, ovarian 
position being far away from the ultrasound transducer due to 
pelvic adhesions, and unavoidable intestinal gas interference in the 
patient’s pelvic region. 

The primary cause of model errors was the relatively low quality of 
certain images. The error cases shown in the visualization examples 
may be due attributed the fact that while most ovaries are situated 
independently within the pelvic cavity, some are closely adjacent to 
the uterus and pelvic blood vessels, and a few exhibit strong stromal 
echoes-conditions that are relatively uncommon in the dataset. In 
addition, based on the Rotterdam Guidelines for PCOS4, ovaries 
containing follicles with diameters of 10 mm were excluded. When 
PCOS ovaries contained follicles approaching 10 mm in diameter, the 
model occasionally misclassified them. These specific circumstances 
led to relatively limited exposure during training, which may have 
contributed to errors in such cases.

Previous studies have indicated that not all PCOS patients exhibit 
PCOM15, and around 25% of women with normal reproductive 
function may show PCOM features7,19. Furthermore, PCOM may also 
be observed in women with coexisting pituitary, thyroid, adrenal, and 
kidney diseases7,8. In our study, such patients accounted for a relatively 
small proportion of the sample, and the model accurately identified 
PCOS patients without PCOM and NPCOS patients with suspected 
PCOM in both the internal and external validation sets. This might be 
due to the deep learning model’s ability to extract more informative 
features from ovarian images, offer an advantage in recognition. 
However, more samples may be necessary for further validation.

The YOLOv11 model developed in this study can rapidly and 
accurately identify the target ovary, operating at a diagnostic speed 
50 times faster than that of a senior ultrasound doctor. This clearly 
highlights the advantages of AI models in medical image recognition 
and diagnosis. In addition, the model needs only a single ovarian 
ultrasound section with the highest number of follicles, simplifying 

the process of follicle counting in PCOS assessments and greatly 
improving the efficiency.

Among the patients included in our study, gynecological patients 
accounted for a relatively large proportion of the sample, and fewer 
women had PCOM with regular menstrual cycles. This resulted in 
certain bias in sample coverage, and the efficiency of the model should 
be further validated with samples that allow broader disease coverage. 
In addition, this study did not include adolescent patients with PCOS, 
indicating need for further research for this particular population.

In this study, an automatic recognition model for PCOS ovarian 
ultrasound images was established using the YOLOv11 deep learning 
framework, demonstrating good target recognition ability and 
diagnostic efficiency. This method can simplify the conventional 
follicle counting process based on ultrasound and enhance the 
universality and speed of PCOS ultrasound evaluation. The model 
has high potential for clinical application. As the first large-sample 
prospective study on ultrasound-based evaluation of PCOS in East 
Asian women at two centers, this study may serve as a foundation 
for evidence-based medicine for patients with PCOS.
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