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Background: Multiple myeloma is a plasma cell dyscrasia 
characterized by transformation of B cells into malignant cells. 
Although there are data regarding the molecular pathology of multiple 
myeloma, the molecular mechanisms of the disease have not been 
fully elucidated. 
Aims: To investigate the gene expression profiles in bone marrow 
myeloma cells via RNA-sequencing technology. 
Study Design: Cell study. 
Methods: Myeloma cells from four patients with untreated multiple 
myeloma and B cells from the bone marrow of four healthy donors 
were sorted using a FACSAria II flow cytometer. The patient pool 
of myeloma cells and the control pool of B cells were the two 
comparative groups. A transcriptome analysis was performed and the 
results were analyzed using bioinformatics tools. 
Results: In total, 18.806 transcripts (94.4%) were detected in the pooled 
multiple myeloma patient cells. A total of 992 regions were detected as 

new exon candidates or alternative splicing regions. In addition, 490 
mutations (deletions or insertions), 1.397 single nucleotide variations, 
415 fusion transcripts, 132 frameshift mutations, and 983 fusions, 
which were reported before in the National Center for Biotechnology 
Information, were detected with unknown functions in patients. A 
total of 35.268 transcripts were obtained (71%) (25.355 transcripts 
were defined previously) in the control pool. In this preliminary 
study, the first 50 genes were analyzed with the MSigDB, Enrichr, 
and Panther gene set enrichment analysis programs. The molecular 
functions, cellular components, pathways, and biological processes of 
the genes were obtained and statistical values were determined using 
bioinformatics tools and are presented as a supplemental file. 
Conclusion: EEF1G, ITM2C, FTL, CLPTM1L, and CYBA are 
identified as possible candidate genes associated with myelomagenesis.
Keywords: Flow cytometry, gene expresion, multiple myeloma, 
plasma cell dyscrasias, transcriptome analyses

Multiple myeloma (MM) is a cancer of plasma cells in which 
abnormal types of immunoglobulins are produced that can be 
measured in blood and urine (1). MM is a clonal B cell malignancy 
characterized by a clinical pentad in the bone marrow (2). According 
to the National Cancer Institute Surveillance, Epidemiology, and 
Results Program in 2017, 30,280 new cases of MM were diagnosed, 
and 12,590 deaths occurred in the United States (3). 
The etiology of MM depends on many factors, such as the 
environment, chemical agents, viruses, and genetic factors (4). MM 
is caused by several molecular mechanisms, such as activation of 
oncogenes, genomic instability, and chromosome abnormalities 

(5). Accumulated plasma cells in the bone marrow of patients with 
MM are identified by surface membrane antigens, such as CD38, 
CD138, CD56, CD117, and CD33. Although most myeloma cells 
typically express CD38(+), CD138(+), CD56(+), and CD19(-), 
these cells may indicate genetic heterogeneity (6). Next generation 
sequencing is evolving rapidly, and RNA-seq has become a widely 
used tool for understanding the molecular mechanisms of human 
cancers. The transcriptome is the complete set of transcripts in a cell 
that allows for the identification of exons and alternative splicing/
isoforms and novel RNAs. Massive parallel sequencing platforms 
are used to measure the differential expression of transcripts (7).
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In the present study, we provide comprehensive insight into 
the transcriptomes of patients with MM and healthy donors. 
Many of the genes were determined in transcriptome profiles 
of pooled myeloma cells and were determined to play a role in 
MM pathogenesis via intracellular pathways, gene expression 
patterns, biological functions, and protein-protein interactions 
using in silico tools. Our transcriptomic profile obtained data 
to evaluate differential expression of all transcripts, alternative 
new splicing variants, mutations, and fusion genes. These results 
will contribute to the understanding of myeloma pathogenesis 
and provide valuable information for prognostication and new 
therapies.

MATERIALS AND METHODS

Sample collection
This study was approved (2010/108-28) by the Ethics Committee 
of	 İstanbul	 University	 Faculty	 of	 Medicine.	 Written	 informed	
consent Helsinki Declaration and ethics committee documents 
was obtained from all patients and healthy donors. We performed 
RNA-seq using the Ion Torrent Personal Genome Machine (PGM) 
platform to compare the transcriptome profiles of four newly 
diagnosed patients with untreated MM and four healthy donors. 
Bone marrow was aspirated from the hip bones of all patients and 
donors. The bone marrow samples were subjected to Ficoll gradient 
centrifugation (1.077 g/mL Ficoll), and the mononuclear cells were 
collected. The viability and absolute cell counts were determined 
by the Vi-CELL™ XR Cell Counter (Beckman Coulter, Brea, CA, 
USA).

Fluorescence-activated cell sorting
Myeloma cells (CD38+, CD138+, CD19-, and CD56+) and healthy 
B cells (CD38+, CD138+, CD19+, and CD56-) were selected 
from bone marrow mononuclear cells using a gating strategy by 
simultaneously specifying cell surface markers, and by determining 
forward and side light scattering characteristics on the FACSAria 
II Cell Sorter (Becton Dickinson, San Jose, CA, USA) (Figures 1, 
2). The antibodies used for activating fluorescence and cell sorting 
were CD138/SYNDECAN-1 (cat: 347216) allophycocyanin, CD38 
(cat: 340909) fluorescein isothiocyanate, CD19 (cat: 345777) 
phycoerythrin, CD56 (cat: 557747), and phycoerythrin cyanin 
(Becton Dickinson). The cells were passed through a 100 µm nozzle 
tip at a speed of approximately 50,000 events per sec. The images 
were taken and the analysis was performed using FACS Diva 
Software 6.1.2. The sorted cells were frozen for RNA isolation.

RNA isolation
RNA was extracted from the sorted cells using the PureLink 
RNA Microkit (cat: 12183_016; Invitrogen, Carlsbad, CA, USA). 
Before proceeding to rRNA depletion, the quantity and quality 
of total RNA was evaluated using the RNA 6000 Pico kit on the 
Agilent 2100 Bioanalyzer (Agilent Technologies, Anaheim, CA, 
USA). After checking the quantity and quality of the RNA, we 
pooled the RNA samples from the four untreated MM patients and 
four healthy donors. The workflow of the study is summarized in 
Table 1.

rRNA depletion
rRNA depletion was performed using the Eukaryotic Ribominus 
kit (cat no: A10837_2/A10837_08; Invitrogen). The quantity and 
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FIG. 1. Flow cytometry results of malignant B cells from bone marrow of a patient with Multiple myeloma. First, myeloma cells were gated by using specific cell surface markers that were 
CD138+ and CD38+ by determining forward and side light scattering characteristics on the FACSAria II Cell Sorter (Becton Dickinson, San Jose, CA, USA). Then sorted malignant Multiple 
myeloma cells using with cell sorting by the cell surface markers CD56+, CD19- according to the FACSAria II Cell Sorter.



quality of the mRNA was evaluated using the RNA 6000 Pico kit 
on Agilent 2100 Bioanalyzer.

Library preparation and RNA sequencing
The RNA-sequencing libraries were prepared from the pooled RNA 
of the patients and healthy donors. The libraries were constructed 
using the Ion Total RNA-seq V2 kit protocol for transcriptome 
profiling of low-input RNA samples (April 2011). The quality of 
the libraries was validated using the Agilent High Sensitivity DNA 
kit on the Agilent 2100 Bioanalyzer (Figure 3). The final library 
concentrations were calculated after validating the libraries, using 

the Ion PGM™ 200 Xpress Template kit (cat no: 4474280). Each 
library was amplified by Emulsion polymerase chain reaction of 
ion sphere particles (ISPs). These ISPs were recovered from the 
emulsion. The templated ISPs and unbound ISPs were determined 
by fluorometric assay on Qubit® 2.0.
The Ion PGM™ system was cleaned and initialized before 
sequencing. Sequencing was accomplished using the Ion PGM™ 
200 Sequencing v2 kit (cat: 4474004; Life Technologies, Carlsbad, 
CA, USA) according to the manufacturer’s instructions. Pooled 
samples were sequenced with a semiconductor-based sequencing 
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FIG. 2. Bone marrow B cell flow cytometry results from a healthy donor. First, B cells were gated by using specific cell surface markers that were CD138+ and CD38+ by determining 
forward and side light scattering characteristics on the FACSAria II Cell Sorter (Becton Dickinson, San Jose, CA, USA). Then sorted B cells using with cell sorting by the cell surface 
markers CD56+, CD19+ according to the FACSAria II Cell Sorter.

FIG. 3. In Agilent Bioanalyzer gel-like image of cDNA. This image shows produced cDNA samples quality controls. After library construction for the quality of the libraries was validated 
using the Agilent High Sensitivity DNA kit on the Agilent 2100 Bioanalyzer. DNA ladder (L), Lanes 1-3-5 (control cDNA library), the lanes 3-5 are ten-fold diluted sample 1. Lanels 2-4-6 
(Multiple myeloma cDNA library). The lanes 4-6 are ten- fold diluted sample 2. Lane 7 (negative). Green lines indicate the low weight (35 base pairs) DNA ladder, Purple lines the high 
weight (10380 base pairs) DNA ladder.



system using the Ion 318™ Chip (lots: P30518.1, AA0150428, and 
AA0150429; Life Technologies).

RNA-sequencing analysis
The pooled RNA from the patients with MM and that from the 
controls was subjected to massively parallel cDNA sequencing at 
İstanbul	University	Whole	Genome	Sequencing	Laboratory	Aziz	
Sancar Institute of Experimental Medicine. The sequencing data 
were analyzed with the PSSC Labs Big Data Server (Lake Forest, 
CA, USA). The quality of the raw sequencing data was checked 
and the data were preprocessed according to two criteria: adaptors 
and low quality sequences (readings with ambiguous N’s) were 
removed, and data with a quality score (Qscore) <30 was trimmed.

Bioinformatics analysis
The trimmed sequencing reads were aligned to the UCSC human 
reference genome (build GRCh37/hg19) using TopHat v2.0.6, 
which incorporates Bowtie v0.12.8 software to build the alignment. 
The expression level for each transcript was normalized to the 
reads per kilobase of the exon model per million mapped reads 
(RPKM) (8). Cufflinks v2.0.2 was used to operate the original 

alignment file generated by tophat and the gene transfer format 
file for genome annotation to determine the difference between the 
expressed genes. The first 50 genes from the pooled MM RNA 
that were highly differentially expressed were analyzed using the 
Gene Set Enrichment Analysis (GSEA) program (Figure 4) and 
also demonstrated protein interactions. 

RESULTS

The cDNA libraries from the patients with MM and the control group 
were subjected to massively parallel transcriptome sequencing. Of 
the 18,806 total transcripts obtained by the transcriptome analysis, 
17,760 were reported previously in pooled patients with MM. 
These transcripts were used in the downstream analysis.
In total, 992 regions were detected and were candidates for new 
exons or alternative splicing regions. In addition, 490 deletions or 
insertions and 1.397 single nucleotide variations were detected; 
415 fusion transcripts were defined. A total of 983 fusions, which 
were reported before in National Center for Biotechnology 
Information, were detected with unknown functions. In total, 
132 frame shift mutations were identified in pooled patients with 
MM; 35,268 transcripts were obtained (71%) (25,355 transcripts 
were defined previously) in the control pool. Qscore values of 
about 35% on average for each chromosome were calculated. We 
measured the transcript values and identified the differentially 
expressed genes between the two groups using Cuffdiff/Cuflink. 
In total, we detected 12,453 expressed genes by calculating reads 
per kilobase million (RPKM) values and analyzed the data from 
the first 50 highly expressed selected genes in the pooled MM 
cells (Table 2) and compared the expression levels with the 
controls (Table 3). The eukaryotic elongation factor 2 (EEF2) 
gene was the most significantly expressed gene among the MM 
and normal cells according to our RPKM results. Our analysis 
included the majority of annotated human genes. The analysis 
of the whole transcriptome data revealed different expression 
levels of several genes, such as JAK1, JAK2, JAK3, RAF, IL6R, 
NCAM (CD56), WHSC1, MCL1, BCL2, and IGF1, which showed 
myeloma pathogenesis as reported previously. These 50 genes 
were subjected to the GSEA using MSigDB. As a result, 11 of 
these genes had increased expression in plasma cells from patients 
with MM that significantly overlapped between EEF1A1, UBC, 
UBB, CALR, CXCR4, JUND, FOS, PIM2, JUN, GAPDH, and 
HSP90B1 and were previously reported as upregulated in the 
Munshi_multiple _myeloma data set (Figure 4). The biological 
functions, molecular processes, and pathways of these genes 
were determined using the online tool Panther-GO (Figures 5-7). 
These genes were also analyzed by the String v9.0 program to 
demonstrate protein-protein interactions (Figure 8). We performed 
the bioinformatics calculations using the Enrichr GSEA program. 
Computational bioinformatics was used to explore the deep 
relationships between the genes in the annotated gene sets and 
between other data sets. We investigated and visualized the overlap 
between our data sets within the Enrichr program to compare with 
other web-server tools and resources that serve gene set libraries. 
The molecular functions, cellular components, pathways, and 
biological processes are presented as a supplemental file.
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TABLE 1. RNA-sequencing workflowcells



DISCUSSION

Decades of scientific research data backed up with array 
technologies and next generation sequencing technologies have 
shown us two important contributors to MM pathogenesis. One is 
the interactions between myeloma cells and the microenvironment 
and the other is malignant clone genetic transformation (9,10). 
In this study, we purified and directly sorted myeloma cells. 
Multicolor flow cytometry is a sensitive method to analyze plasma 
cell immunophenotypes and identify normal and neoplastic plasma 
cell populations. In our study, the surface markers of malignant 
B cells obtained from the literature were compared with those of 
the MM group with CD38(+), 138(+), CD56(+), CD19(-) B cell 
separation of the control group using CD38(+), 138(+), CD56(-), 
CD19(+) surface markers by multicolor flow cytometry (11). The 
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FIG. 4. The first 50 highly expressed selected genes in the pooled Multiple myeloma cells results of the Gene Set Enrichment Analysis-MSigDB program. Summary figures displayed 
enriched gene sets with three major columns: gene names, the images of overlapping between gene and gene sets, descriptions of gene names. These 50 genes to compare with other gene 
set libraries subjected to the Gene Set Enrichment Analysis using MSigDB. Shown in the figure, 11 of these genes had increased expression in myeloma cells that significantly overlapped 
between EEF1A1, UBC, UBB, CALR, CXCR4, JUND, FOS, PIM2, JUN, GAPDH, and HSP90B1 and were previously reported as upregulated in the Munshi Multiple myeloma dataset.

FIG. 5. Biological process analysis of the first 50 highly expressed genes according to 
the PANTHER program: The highest rated biological process is cellular process analyzed 
in bar view. It is next to the color indicator that identifies the respective GO terms and 
numbers according to PANTHER. 

FIG. 6. Molecular function analysis of the first 50 highly expressed genes according to 
the PANTHER program: The highest rated molecular functions is binding analyzed in bar 
view. It is next to the color indicator that identifies the respective GO terms and numbers 
according to PANTHER.

FIG. 7. Pathway analysis of the first 50 highly expressed genes according to the PANTHER 
program. Results of PANTHER colorful bars view show us several myeloma pathways 
associated with especially the B cell activation, inflammation mediated by chemokine and 
cytokine signaling pathway and apoptosis signaling pathway.
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TABLE 2. Reads per kilobase of the exon model per million mapped reads values of the first 50 selected genes highly expressed in pooled in multiple myeloma cells 

Gene name Transcript 
length

Transcript ID Total transcript 
reads

Exons RPKM Chromosome Chromosome 
region start

Chromosome 
region end

1 EEF2 3158 NM_001961.3 863 15 1256.601 NC_000019 3976054 3985461

2 HLA-B 1572 NM_005514.6 395 8 1155.429 NC_000006 31321649 31324989

3 EEF1A1 3512 NM_001402.5 819 8 1072.329 NC_000006 74225473 74230755

4 B2M 987 NM_004048.2 198 4 922.458 NC_000015 45003685 45010357

5 TXNDC5 2958 NM_030810.2 592 10 920.285 NC_000006 7881750 7911041

6 TMSB10 482 NM_021103.3 71 3 677.345 NC_000002 85132763 85133799

7 HLA-A 1549 NM_002116.6 222 8 659.022 NC_000006 29910309 29913661

8 HLA-C 1525 NM_002117.4 218 8 657.333 NC_000006 31236529 31239855

9 EEF1G 1538 NM_001404.4 217 10 648.787 NC_000011 62327073 62341460

10 ITM2C 2073 NM_030926.4 261 6 578.948 NC_000002 231729621 231743963

11 FTL 871 NM_000146.3 108 4 570.17 NC_000019 49468566 49470136

12 GNB2L1 1109 NM_006098.4 134 8 555.612 NC_000005 180663928 180670906

13 UBC 2574 NM_021009.4 295 2 527.002 NC_000012 125396192 125399577

14 FOSB 3776 NM_006732.2 409 4 498.07 NC_000019 45971253 45978437

15 GAPDH 1310 NM_002046.3 139 9 487.913 NC_000012 6643657 6647536

16 CD74 1311 NM_004355.2 137 8 480.526 NC_000005 149781209 149792330

17 JUN 3323 NM_002228.3 324 1 448.346 NC_000001 59246463 59249785

18 TXNIP 2934 NM_006472.3 271 8 424.725 NC_000001 145438462 145442635

19 RHOB 2367 NM_004040.2 216 1 419.618 NC_000002 20646835 20649201

20 FOS 2158 NM_005252.3 195 4 415.51 NC_000014 75745481 75748937

21 ACTG1 1919 NM_001614.2 170 6 407.355 NC_000017 79476999 79479827

22 CXCR4 1674 NM_003467.2 147 2 403.795 NC_000002 136871919 136875725

23 ACTB 1812 NM_001101.3 151 6 383.193 NC_000007 5566779 5570232

24 CLPTM1L 2148 NM_030782.3 177 17 378.911 NC_000005 1317999 1345002

25 VIM 2136 NM_003380.3 174 10 374.582 NC_000010 17270258 17279592

26 HBA2 605 NM_000517.4 48 3 364.825 NC_000016 222846 223709

27 HSPA8 2261 NM_006597.3 175 9 355.907 NC_000011 122928200 122932844

28 TPT1 829 NM_003295.2 64 6 354.997 NC_000013 45911304 45915297

29 DUSP1 2024 NM_004417.3 151 4 343.056 NC_000005 172195093 172198203

30 CYBA 688 NM_000101.2 51 6 340.863 NC_000016 88709697 88717457

31 PIM2 2187 NM_006875.3 161 6 338.513 NC_000023 48770459 48776413

32 HBB 626 NM_000518.4 45 3 330.55 NC_000011 5246696 5248301

33 KLF2 1655 NM_016270.2 117 3 325.077 NC_000019 16435651 16438345

34 JUND 1870 NM_005354.4 128 1 314.751 NC_000019 18390563 18392432

35 IGLL5 1059 NM_001178126.1 72 3 312.633 NC_000022 23229960 23238014

36 BTG2 2712 NM_006763.2 181 2 306.893 NC_000001 203274664 203278730

37 JUNB 1816 NM_002229.2 121 1 306.385 NC_000019 12902310 12904125

38 PPIB 1028 NM_000942.4 68 5 304.169 NC_000015 64448014 64455354

39 SDC1 3201 NM_002997.4 209 5 300.234 NC_000002 20400825 20425194



transcriptome patterns of the first 50 highly expressed genes in 
Figure 4 and in those in Figures 5-7 were analyzed, and a pathway 
network was constructed to better understand the relationships 
among them. Technologies must be developed to identify related 
genes that show potential to play a role in transforming normal 
cells into myeloma cells. GSEA MSigD identified genes were 
included in previously known and myelomagenesis signaling 
related pathways. In addition, the families of these genes were 
analyzed with the same program. According to the results, JUN 
was in the oncogene family; FOSB, JUN, JUNB, JUND, and KLF 
were in the transcription factor family; PIM2 and SIK1 were in 
the protein kinase family; and CXCR4, CD74, ICAM3, and SDC1 
were cell differentiation markers. In particular, the first 50 genes 
supported that the ubuquitin genes, such as UBB, UBC, EEF2, 
were related to the pathogenesis of MM. The ubiquitin cascade 
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TABLE 2. Continued

Gene name Transcript 
length

Transcript ID Total transcript 
reads

Exons RPKM Chromosome Chromosome 
region start

Chromosome 
region end

40 HLA-E 2662 NM_005516.5 169 8 291.929 NC_000006 30457183 30461982

41 PSAP 2822 NM_002778.2 175 14 285.154 NC_000010 73576055 73611082

42 CALR 1911 NM_004343.3 106 9 255.061 NC_000019 13049414 13055304

43 ICAM3 1780 NM_002162.3 95 7 245.416 NC_000019 10444452 10450345

44 GLTSCR2 1522 NM_015710.4 80 13 241.699 NC_000019 48248793 48260323

45 HSP90B1 2780 NM_003299.1 146 18 241.494 NC_000012 104324189 104341703

46 PTMA 1205 NM_002823.4 62 5 236.594 NC_000002 232573235 232578251

47 UBB 971 NM_018955.2 49 2 232.047 NC_000017 16284367 16286054

48 HSPA1B 2520 NM_005346.4 126 1 229.916 NC_000006 31795512 31798031

49 SIK1 4706 NM_173354.3 232 14 226.691 NC_000021 44834395 44847002

50 FAM46C 5720 NM_017709.3 271 2 217.857 NC_000001 118148604 118171011

FIG. 8. Protein-protein interactions network of between the first 50 highly differentially 
expressed genes in myeloma cells. The network was constructed using the STRING 
database (http://string-db.org).

TABLE 3. Comparison of the first 50 genes which have highest reads per 
kilobase of the exon model per million mapped reads value in pooled multiple 

myeloma with pooled healthy control

 Gene name MM pooled RPKM Control pooled RPKM

1 EEF2 1256.601 0

2 HLA-B 1155.429 89.8001

3 EEF1A1 1072.329 101.2346

4 B2M 922.458 23.4577

5 TXNDC5 920.285 0

6 TMSB10 677.345 0

7 HLA-A 659.022 0

8 HLA-C 657.333 23.5247

9 EEF1G 648.787 19.9456

10 ITM2C 578.948 0

11 FTL 570.17 91.336

12 GNB2L1 555.612 7.4764

13 UBC 527.002 42.3771

14 FOSB 498.07 0

15 GAPDH 487.913 208.4421

16 CD74 480.526 21.0904

17 JUN 448.346 0

18 TXNIP 424.725 0

19 RHOB 419.618 0

20 FOS 415.51 0

21 ACTG1 407.355 0

22 CXCR4 403.795 0

23 ACTB 383.193 139.7349

24 CLPTM1L 378.911 0

25 VIM 374.582 4.1921

26 HBA2 364.825 301.9547

27 HSPA8 355.907 0



system is a central contributor to cellular processes that regulate 
protein stability, trafficking, and activation (12,13). Proteosome 
inhibitors have been used for many years as a basic therapeutic 
strategy for treating MM and have been developed as antimyeloma 
therapy by focusing on this ubiquitin proteosome cascade (14). 
Losada et al. (15) reported that plitidepsin has successfully 
concluded a phase-III clinical trial for MM. Antitumor activity 
was achieved by targeting plitidepsin to EEF1A2. EEF1A2 has 
proto-oncogenic activity, and it has been reported to be abnormally 
expressed in many human tumors including MM. In our study, the 
EEF2, EEF1G, and EEF1A1 genes were overexpressed and may 
be responsible for inhibiting apoptosis and controlling unfolded 
protein degradation by proteasomes similar to the EEF1G gene. 
Prosaposin is a lysosomal protein that has pleiotropic growth 
factor activity. It is known to be related to the growth of breast 
cancer and to increase ER levels through the mitogen activated 
protein kinase (MAPK) pathway. In addition to gallbladder cancer, 
it operates as a biomarker and promotes increased degradation 
of ceramides, ensuring a survival advantage to cancer cells (16). 
Starlets et al. (17) reported that a cell surface molecule expressed 
on B cells binds CD74 to the macrophage migration-inhibition 
factor, activating CD74; thus, initiating a survival pathway. The 

humanized anti-CD74 monoclonal antibody acts as a potential 
therapeutic agent by exhibiting cell proliferation activity in 
MM (18). Our findings show that CD74 is strongly expressed 
in myeloma cells compared to healthy cells and has a role in the 
oncogenic process of cell proliferation and survival. Prosaposin 
is a protein encoded by the PSAP gene that interacts with CD74 
and may play a role in MM carcinogenesis (Figure 8). Despite 
advances in the understanding of MM pathogenesis, the molecular 
pathways underlying the development of MM are still unknown. 
Our functional and pathway enrichment analysis proposed that 
major histocompatibility complex class I molecules called human 
leukocyte antigens (HLA-A, HLA-B, HLA-C, and HLA-E) are 
involved. Known as antigen processing and presenting machinery 
(AMP), these molecules are important for cell survival, cell cycle 
progression, and inhibition of apoptosis. Defects in the AMP lead 
to immune escape and continuity by cancer. As a result, it enables 
malignant transformation of cells.
The enriched pathways for these upregulated genes are involved in 
peptide transport from the cytosol into the endoplasmic reticulum, 
antigen processing, peptide trimming, and assembly of the major 
histocompatibility complex class I loading complex (19). Leone et 
al. (20) compared the expression levels of calnexin, calreticulin, 
tapasin, and ERp57 genes in premalignant plasma cells obtained 
from patients with monoclonal gammopathy of undetermined 
significance, those with MM, and normal plasma cells from healthy 
donors and showed that these levels are higher in patients with 
monoclonal gammopathy of undetermined significance and MM. It 
has been documented in cell lines from primary cells and various 
tumors, particularly MM, that TAP1 and/or TAP2 mRNA and protein 
levels are not detectable in small quantities. Defects in TAP genes 
play a role in the development of hematological malignancies (21). 
Our results included a mutated TAP gene (data not shown). Another 
related gene is calreticulin. This gene produces a calcium-binding 
protein that is a major component of the endoplasmic reticulum and 
has been shown in various cell types to be involved in regulating 
calcium homeostasis, as a ligand for integrins, and as a component 
of phagocytic synapses (22). Upregulation of the calreticulin gene is 
an adverse prognostic factor as the dominant pro-phagocytic signal 
in diverse tumors and is correlated with increased CD47 expression 
in cancer cells (23). The cisplatin resistance-related protein CRR9p 
(CLPTM1L) gene is overexpressed in lung cancer and knockdown 
of this gene prevents 95-D lung cancer cells from migrating and 
invading (24). Although the function of this gene is largely 
unknown, high expression levels of CLPTM1L have been observed 
in many cancers, and it is linked with cisplatin-induced apoptosis 
(25). Another study demonstrated that blocking CLPTM1L with 
interfering RNA inhibits lung tumorigenesis induced by K-RAS. 
That study suggested that CLPTM1L interacts with PI3 kinase 
and has a major role in RAS-induced AKT phosphorylation (26). 
Our results suggest that the CLPTM1L gene has a higher RPKM 
value in myeloma cells than in healthy donor cells. Cytokines 
and growth factors activate the phosphoinositide 3-kinase/AKT 
signaling cascade, creating life signals for myeloma cells by 
inhibiting apoptosis in MM. The RAS-MAPK pathway provides for 
proliferation of myeloma cells (27). The results of other studies on 
this gene are particularly related to PI3-K/AKT cascades, indicating 
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TABLE 3. Continued

Gene name MM pooled RPKM Control pooled RPKM

28 TPT1 354.997 94.7143

29 DUSP1 343.056 0

30 CYBA 340.863 1.6808

31 PIM2 338.513 0

32 HBB 330.55 178.691

33 KLF2 325.077 0

34 JUND 314.751 0

35 IGLL5 312.633 12.9554

36 BTG2 306.893 0

37 JUNB 306.385 0

38 PPIB 304.169 0

39 SDC1 300.234 0

40 HLA-E 291.929 0

41 PSAP 285.154 2.2344

42 CALR 255.061 0

43 ICAM3 245.416 0

44 GLTSCR2 241.699 0

45 HSP90B1 241.494 0

46 PTMA 236.594 0

47 UBB 232.047 0

48 HSPA1B 229.916 0

49 SIK1 226.691 0

50 FAM46C 217.857 0
MM: multiple myeloma; RPKM: reads per kilobase of the exon model per million 
mapped reads



that it should be considered a plausible candidate gene. Dytfell et 
al. reported that increased TXNDC5 expression in plasma cells and 
serum is related to a poor response to bortezomid-based therapy 
in patients with newly diagnosed MM and in those with relapsed 
MM. Understanding MM biology and identifying drug-resistance 
biomarkers are vital to enable the development of individualized 
treatments. Proteomic signature results indicate that TXNDC5, 
which is a member of the protein disulfide isomerase family, shows 
increased expression and is involved in protection against oxidative 
stress and plays a major role in bortezomib treatment (28). Using 
in silico tools, we identified significant overlaps between EEF1A1, 
UBC, UBB, CALR, CXCR4, JUND, FOS, PIM2, JUN, GAPDH, 
and HSP90B1, which were previously reported to be upregulated in 
MM	according	to	the	Munıshı_	MM	data	set	(Figure	4).	The	Panther	
program revealed the results of molecular features, biological 
functions, and related pathways of the first 50 genes with the highest 
RPKM values. As we compared our findings with the results from 
other studies, we saw that biologic adhesion, biological processes, 
and metabolic processes were the same as these previous studies 
(Figures 5-7). Analyzing these genes using the String program may 
lead to further functional studies on protein-protein interactions 
(Figure 8). This transcriptome analysis of MM was performed for 
the first time in a Turkish population. As results, we determined 
some variations and different mRNA expression patterns in some 
of the previously reported genes particularly those in the ubiqutin-
proteosomal pathway. 
In conclusion, EEF1G, ITM2C, FTL, CLPTM1L, and CYBA are 
possible candidate genes associated with myelomagenesis.
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