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Background: Low bone mineral density (BMD) is a common age-related
condition that elevates the risk of fractures and mortality. Machine
learning (ML) techniques offer a promising approach for early prediction
using readily available clinical, biochemical, and demographic data.
Aims: To evaluate the predictive performance of eleven ML models in
identifying low BMD and to determine the most influential risk factors
using the best-performing model.

Study Design: Cross-sectional study.

Methods: Data were obtained from National Health and Nutrition
Examination Survey (2005-2010, 2013-2014, and 2017-2020), focusing
on individuals aged > 50 years with available femoral neck or total
femur BMD data. After applying exclusion criteria, 12,108 participants
were included. Supervised ML algorithms were trained using 57 clinical,
biochemical, demographic, and behavioral features. Model performance
was assessed using accuracy, area under the curve (AUQ), recall, precision,

INTRODUCTION

Bone mineral density (BMD) declines with age, depending on the
bone mass, leading to osteopenia and, in more advanced stages,
osteoporosis." This condition is a major global public health concern
that adversely affects the quality of life of millions worldwide. Low
bone density affects approximately 200 million individuals globally,
including 54 million older adults in the United States (US).2 It is a
key risk factor for hip fractures, which is one of the most serious
consequences of falls in older adults, with a 1-year mortality rate
of 30%.3 Although this issue is often highlighted in postmenopausal
women, it also significantly affects men, who account for nearly one-
third of all hip fractures and experience poorer outcomes.*

Dual-energy X-ray absorptiometry (DXA) is a non-invasive imaging
technique that accurately assesses bone density and strength using
low radiation and is considered the gold standard for osteoporosis
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and F1 score. SHAP analysis was employed to interpret model outputs
and rank predictors.

Results: The extra trees classifier outperformed other ML methods,
achieving an accuracy of 76.7% and an AUC of 0.85. Recursive Feature
Elimination with Cross-Validation identified 14 key predictors of low
BMD in descending order of importance: sex, age, body mass index, race,
family income-to-poverty ratio, serum uric acid, diabetes status, HDL
cholesterol, urinary creatinine, alkaline phosphatase, mean cell volume,
lymphocyte count, diastolic blood pressure, and glycohemoglobin.
Conclusion: Tree-based ML models, particularly Extra Trees, can
effectively predict low BMD. The identified risk factors include both
established and lesser-studied predictors. These findings support the
use of ML for personalized osteoporosis and osteopenia screening and
highlight its ability to capture complex, multifactorial relationships in
population health data.

screening. Areal BMD measured by DXA is converted to a T-score
based on the mean and standard deviation (SD) of a young adult
reference group: a T-score > -1.0 is considered normal, between
-1.0 and -2.5 indicates osteopenia, and < -2.5 defines osteoporosis,
according to the World Health Organization." Early detection of low
bone density, particularly among individuals with T-scores < -1.0 but
not yet osteoporotic, is essential for timely intervention and fracture
prevention.

In recent years, machine learning (ML) techniques have shown
considerable potential in the early diagnosis and risk stratification
of chronic diseases, including musculoskeletal disorders.>® ML
algorithms can identify complex, non-linear patterns within clinical
and demographic data, enabling more precise prediction of low bone
density compared with traditional statistical methods. However, the
comparative performance of different ML models in predicting low
bone density remains insufficiently explored.
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The aim of this study was to (1) compare the predictive performance
of 11 ML algorithms in identifying individuals with low bone
density using the publicly available National Health and Nutrition
Examination Survey (NHANES) dataset, and (2) to identify the most
influential predictors of low bone density using the best-performing
model. The insights gained from this research are expected to
support evidence-based clinical decision-making and guide
future studies toward personalized interventions for osteoporosis
prevention and management.

MATERIALS AND METHODS

Study population and data source

This study utilized data from selected cycles of the NHANES, a
nationally representative program conducted by the National
Center for Health Statistics under the Centers for Disease Control
and Prevention (https://wwwn.cdc.gov/nchs/nhanes/). NHANES
employed a stratified, multistage probability sampling design to
obtain health-related data from the civilian, noninstitutionalized
US population. Data obtained from the periods of 2005-2010,
2013-2014, and 2017-2020 were included in the study based on the
availability of BMD values (g/cm?) obtained by DXA using Hologic QDR
4500A fan-beam densitometers (Hologic Inc., Bedford, MA, USA)."
The dataset also included information on the sociodemographic
characteristics (e.g., age, sex, race/ethnicity, education), behavioral
factors (e.g., smoking habits, physical activity, alcohol use), clinical
parameters [e.g., body mass index (BMI), blood pressure], and
biochemical markers (e.g., serum vitamin D, calcium, phosphorus).

Femoral neck and total femur BMD measurements were evaluated
to deduce the low bone density. An individual with a femoral neck
or total femur T-score value of < -1 was classified into the low bone-
density group. T-scores were calculated using the following formula:

T-score = [individual BMD-mean BMD (reference population)]/SD
(reference population).

The reference means and SD values were derived from the NHANES
Il reference data, as published by Looker et al."

Individuals who met the following criteria were excluded:
(1) those aged < 50 years, (2) those without BMD measurements
at the femoral neck or total femur, and (3) those with a history of
cancer diagnosis. Based on these criteria, 12,108 participants were
enrolled in the study. The exclusion criteria applied in the study are
depicted in Figure 1.

Data preprocessing

The procedure outlined below was implemented to prepare the
data for the analysis. As a first step in data preparation, variables
with > 30% missing values were removed from the dataset.

Missing value imputation: Missing data of continuous features
were imputed using the K-nearest neighbors (KNN) method, which
estimates missing values based on the similarity of feature patterns
among the closest observations in the dataset, and the most
frequent category was used for imputing categorical variables.

Balkan Med J, Vol. 42, No. 6, 2025

Karaismailoglu and Karaismailoglu. Predicting Low Bone Density with Machine Learning

Categorical encoding: Nominal features were converted to
numerical form via one-hot encoding.

Feature scaling: All continuous variables were standardized using
z-score normalization to ensure comparability across features. The
standardized value z for a given observation x was computed was
computed using the following formula:

= (Xi_u)/G,
where, x represents the i"" individual’s value, u is the mean of the

feature, and o is the SD of the feature.

Multicollinearity: Features with a correlation coefficient > 0.80 or
< -0.80 were identified and removed to reduce multicollinearity.

Feature selection: In order to optimize the model performance
and decrease overfitting, feature selection was applied based on the
Light Gradient Boosting Machine (LightGBM) algorithm. LightGBM
calculates feature importance scores during the model training

NHANES dataset
2005-2010, 2013-2014,
2017-2020
n=59,838
Excluded indiviuals
Age<50: n=40,685
Missing BMD measurement: n=26,697|
Cancer history: n=2,270 A
s N\
Included participants
n=12,108
s Y
Missing value
imputation
with KNN
)
Continuous features Categorical feature
z-score standardisation One-hot encoding

Feature selection
Recursive Feature Elimination with

Cross-Validation approach

Test set

Training set

n=9,686

n=2,422

ET, RF, LightGBM,GB, Accuracy, AUC, Recall,
LR,LDA, AdaBoost, RC, Precision

Model building Model evaluation
SVM, DT

FIG. 1. Flowchart of the study design.

NHANES, National Health and Nutrition Examination Survey, BMD, bone mineral
density, ET, extra trees classifier; RF, random forest classifier; LightGBM, light gradient
boosting machine; GB, gradient boosting classifier; LR, logistic regression; LDA, linear
discriminant analysis; AdaBoost, AdaBoost classifier; RC, ridge classifier; SVM, support
vector machine; DT, decision tree classifier; KNN, K-nearest neighbors; AUC, area under
the receiver operating characteristic curve.
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process by evaluating each variable’s contribution to information
gain across decision trees. The importance scores are used to rank
the input variables, and the least informative features are removed
from the dataset. In this study, the threshold for selection was set to
retain the top 20% of features with the highest importance scores.

Data splitting: The dataset was randomly partitioned into a
training set (80%) and a testing set (20%). Feature selection, model
fitting, and hyperparameter tuning were performed solely on
the training set, and the final model performance metrics were
evaluated on the testing set.

Cross-validation: We employed 10-fold cross-validation on the
training set to assess model generalizability and guard against
overfitting. The data were randomly split into ten equally sized
folds, and, in each iteration, nine folds were used to fit the model
and optimize hyperparameters, whereas the remaining fold was
used as the validation set. Performance metrics [e.g., area under
the curve (AUC), accuracy] were computed for each fold and then
averaged to provide a robust estimate of model performance before
the ultimate assessment on the withheld test dataset.

To avoid data leakage, all preprocessing steps (including imputation,
encoding, scaling, feature selection, and feature elimination) were
implemented within astrictly nested pipeline. These transformations
were fitted exclusively on the training folds during cross-validation
and subsequently applied to the corresponding validation fold,
whereas the held-out test set was used only for the final model
evaluation.

Machine learning algorithms

A comprehensive array of supervised classification algorithms,
including ensemble tree techniques, gradient-based learning
systems, linear models, kernel machines, and instance-
based methodologies, was used in the study.

Extra trees classifier

The ET is an ensemble learning approach that relies on randomly
generating numerous decision trees. This strategy differs from the
conventional decision trees by employing entirely random threshold
values at the node separation for each tree, which enhances the
variety among the models. This randomization plays a role in
preventing overfitting and presents robust performance on noisy
datasets.™

Random forest classifier

RF constructs multiple decision trees with bootstrapped subsets of
the training data and integrates their predictions through majority
voting. The procedure incorporates randomness in two ways: first,
by sampling the data, and second, by selecting a random subset of
features at each node to determine the optimal split. This approach
helps reduce the variance of individual decision trees and prevents
overfitting, which is common in single-tree models.™

LightGBM

LightGBM is a gradient-boosted algorithm that constructs trees by
prioritizing leaves, providing faster training and lower memory
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usage on big datasets. It leverages histogram-dependent partitioning
to efficiently handle a substantial quantity of continuous features.™

Gradient boosting classifier

As a sequential ensemble learning framework, the GB builds an
additive model by optimizing a loss function using decision trees
as weak learners. In contrast to parallel methodologies such as
Random Forest, it fits trees in sequence, whereby every new tree
aims to correct the residual errors of the prior ensemble of models.
This approach offers a highly flexible and powerful model that can
identify elaborate nonlinear relationships. Nevertheless, it is also
more sensitive to overfitting."

Logistic regression

LR is a linear classification algorithm commonly used due to its
simplicity, interpretability, and statistical foundations. It models
the probability of a binary outcome utilizing the logistic (sigmoid)
function, with the underlying assumption of a linear relationship
between the log-odds of the target and the independent variables.™

Linear discriminant analysis

LDA assumes normally distributed classes with equal covariance
matrices and finds a linear combination of features that maximizes
class separation. It is particularly effective when class distributions
in scenarios by class distributions that are nearly Gaussian, and the
sample sizes are within a moderate range."”

AdaBoost classifier

Adaptive Boosting (AdaBoost) is an adaptive boosting algorithm that
sequentially fits weak learners by reweighting incorrectly classified
instances in every subsequent round. It works by sequentially
training models, where each subsequent learner focuses more on
the instances that were misclassified by the previous ones. However,
this approach can be sensitive to noisy data and outliers."

Ridge classifier

The RC is a regularized version of linear classification that applies
an L2 penalty to shrink coefficient estimates. The method reduces
overfitting, especially in cases with high-dimensional or collinear
data. Though it is similar to LR, this method uses a least-squares loss
function rather than a log-likelihood approach.™

Support vector machine

SVM is a supervised learning model used for classification tasks,
especially when the feature space is high-dimensional. The linear
kernel aims to identify the optimal hyperplane that maximally
separates classes by maximizing the margin between the closest data
points, which is known as support vectors. Although it performs well
in big datasets, it may require significant computational resources.?’

Decision tree classifier

DT is a non-parametric, tree-based supervised learning algorithm
that iteratively divides the dataset into smaller partitions, with
each division determined by the feature that results in the greatest
information gain. Finally, it establishes a tree structure where the
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leaves represent class labels. It is easy to interpret and visualize, but
prone to overfitting without proper pruning.?'

K-Nearest neighbors

KNN is an instance-driven, non-parametric classification algorithm
that assigns class labels based on the majority vote of the “k” closest
neighbors in the feature space. It stores all the training dataset and
calculates distances (generally Euclidean) between a new input and
existing samples during the prediction process. Despite being simple
to implement, this approach may be slow during prediction and
sensitive to the choice of k and the distance metric.?

Performance evaluation metrics

The performance of the classification models was evaluated using
accuracy, AUC, recall, precision, and F1. Accuracy measures the
proportion of correctly classified instances among all observations
and is defined as follows:

TP + TN
TP + TN + FP + FN

Accuracy =

where, TP, TN, FP, and FN represent true positive, true negative, false
positive, and false negative values, respectively.

Recall or sensitivity quantifies the model’s capacity to identify actual
positive instances and is calculated as follows:

TP

Recall = 757N

Precision indicates the proportion of true positive predictions
among all positive predictions.

TP

Precision = TP ¥ FP

The F1-score is the harmonic mean of Precision and Recall, serving
as a single metric that balances the trade-off between them.

PrecisionxRecall
F1 =2

*Precision + Recall

AUC is the probability that a randomly selected positive observation
is ranked higher by the model than a randomly selected negative
observation. A higher AUC reflects a better ability to distinguish
between classes.

Statistical analysis

Normality of quantitative variables was tested with the
Kolmogorov-Smirnov test. An independent samples t - test was
implemented to compare continuous variables between low and
normal bone densities, and the data were expressed as the mean +
SD. Categorical variables were shown as n (%) and compared using
the Pearson 2 test (or Fisher’s exact test when expected counts
were < 5). All tests were two-tailed, with p <0.05 considered
to indicate statistical significance. Analyses were performed in
R version 4.3.2 (R Foundation for Statistical Computing, Vienna,
Austria).
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ML models were conducted utilizing Python (version 3.10.0) within
the JupyterLab environment (version 4.3.5). Data preprocessing,
feature selection, model training, and evaluation were implemented
with the PyCaret (version 3.2.0) library, an open-source, low-code
ML framework that provides an integrated pipeline for classification
and regression tasks. Performance evaluation metrics, such as
accuracy, AUC, precision, recall, and F1, were computed to assess
and compare the model performance.

RESULTS

A total of 12,108 individuals (female, 48%) who were > 50 years
of age (64 + 9) and had complete femoral neck and total femur
BMD data were included in this study. Approximately 45% of
the participants were included in the low BMD group. The ML
models were constructed employing 57 features, systematically
categorized into seven categories to reflect their physiological
and clinical relevance, as follows: 34 biochemical markers
(including serum and urinary analytes), 12 hematological indices
(components of the complete blood count), 4 demographic
characteristics (age, sex, race/ethnicity, and income), 3 vital signs
(pulse and blood pressure measurements), 2 self-reported clinical
indicators (diabetes status and sleep duration), 1 anthropometric
parameter (BMI), and 1 measure of physical function (walking
ability).

Table 1 summarizes the performance of the 11 ML classifiers
in predicting low BMD. Models were ranked by accuracy. The
ET achieved the best overall performance with an accuracy of
0.7672, AUC = 0.8524, recall = 0.6873, and precision = 0.7722.
The RF followed closely (accuracy = 0.7621; AUC = 0.8446).
LightGBM also performed well (AUC = 0.8104; precision = 0.7329),
reflecting a balanced trade-off between sensitivity and specificity.
Ensemble methods such as Gradient Boosting and AdaBoost
showed moderate predictive performance, whereas linear models
(e.g., LR, RQ) yielded slightly lower accuracy but demonstrated
consistent recall and AUC values. Hyperparameter tuning of
the ET model using grid search with 10-fold cross-validation
did not yield improvements; thus, the default configuration
was retained for the final model. The key parameters included:
n_estimators = 100, criterion = “gini”, max_features = “sqrt”,
min_samples_split = 2, min_samples_leaf = 1, and bootstrap =
False. Other parameters were left at their default values, including
max_depth = None, max_leaf_nodes = None, and random_state
= 123 for reproducibility. The calibration of the best-performing
model, the ET, was assessed to evaluate the reliability of its
probability predictions. The calibration curve, as presented in
Figure 2a, demonstrated that the model was well-calibrated, as
the plot of its predicted probabilities closely tracks the diagonal
line representing perfect calibration. This visual finding is further
supported by a low Brier score of 0.12, indicating a high degree
of agreement between the predicted risks and the observed
outcomes. In addition, the confusion matrix indicates the model
achieved a sensitivity of 69% for detecting low BMD and a
specificity of 84% for identifying normal BMD (Figure 2b).
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TABLE 1. Performance Metrics of Classification Models.
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Model Accuracy Recall Precision F1 AUC (95% Q1)

Extra trees classifier 0.7672 0.6873 0.7722 0.7272 0.8524 (0.8415-0.8670)
Random forest classifier 0.7621 0.6890 0.7697 0.7271 0.8446 (0.8276-0.8525)
Light gradient boosting machine 0.7375 0.6762 0.7329 0.7034 0.8104 (0.8085-0.8278)
Gradient boosting classifier 0.7230 0.6520 0.7193 0.6840 0.7960 (0.7770-0.8121)
Logistic regression 0.7100 0.6565 0.6960 0.6756 0.7859 (0.7739-0.8091)
Linear discriminant analysis 0.7096 0.6577 0.6948 0.6757 0.7859 (0.7637-0.7988)
Ada boost classifier 0.7095 0.6500 0.6977 0.6730 0.7803 (0.7658-0.8096)
Ridge classifier 0.7093 0.6571 0.6946 0.6753 0.7859 (0.7341-0.8020)
Support vector machine 0.6948 0.6312 0.6837 0.6564 0.7602 (0.7498-0.7873)
Decision tree classifier 0.6891 0.6693 0.6594 0.6732 0.6876 (0.6680-0.6970)
K neighbors classifier 0.6664 0.6216 0.6419 0.6316 0.7220 (0.7071-0.7314)

AUC, area under the curve, Cl, confidence interval

Calibration plots (reliability curve)
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FIG. 2. (a) Calibration curve demonstrating the model’s reliability. (b) Confusion matrix detailing the model’s classification performance.

BMD, bone mineral density.

After identifying the best-performing model, we conducted feature
selection to determine the most influential risk factors implicated in
low BMD. The result obtained from the recursive feature elimination
with cross-validation approach utilizing the ET was presented in
Figure 3. The model’s performance, as measured based on the
cross-validated accuracy, increased with the addition of more
features and then reached a plateau at approximately 14 features,
with 0.767 accuracy. It demonstrates that a smaller, selected subset
of variables can achieve strong predictive performance without
including all available features.

Using SHAP (SHapley Additive exPlanations) method, we identified
14 key predictors, including sex, age, BMI, race, family income/
poverty, serum uric acid (mg/dL), diabetes status, HDL-cholesterol
(mg/dL), urinary creatinine (mg/dL), alkaline phosphatase (ALP;
[U/L), mean cell volume (fL), lymphocyte (%), diastolic blood pressure
(mmHg), and glycohemoglobin (%), and reported that this subset of
features yielded the highest predictive accuracy for predicting low

RFECV for RandomForestClassifier
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FIG. 3. Optimal feature subset determination using RFECV for extra trees
classifier.
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BMD. The comparison of the relevant variables between the low and
normal BMD groups is presented in Table 2.

The SHAP beeswarm plot illustrates both the importance and
direction of each feature’s impact on the model. The red points
represent higher feature values, whereas the blue points indicate
lower values. The x-axis reflects each feature’s contribution to the
model’s prediction of low BMD. The top-ranked feature in the plot
is the most influential in the prediction. Accordingly, sex, age, and
BMI are the top three contributors to the model’s prediction of low
BMD. Female sex, older age, and having a lower BMI were found to
be associated with a higher predicted risk of low BMD. In addition,
demographic factors, race/ethnicity, and family income/poverty
contributed meaningfully. Among the biochemical markers tested,
lower uric acid levels were associated with increased predicted
risk, whereas higher HDL-cholesterol levels were linked to higher
risk (Figure 4a). The SHAP bar plot displays the average absolute
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impact of each feature on the model’s predictions (Figure 4b).
Figure 4c presents the SHAP heatmap for the test set, wherein each
column represents an individual, ordered left to right by the total
magnitude of the SHAP values. In this figure, rows correspond to
the most influential features. Red color reflects a risk-increasing
contribution to the predicted probability of low BMD, whereas blue
color is associated with a decreased risk. The black trace above the
heat map [f(x)] shows the model’s predicted risk per individual,
confirming that columns with the largest cumulative pink area
correspond to the highest predicted risk. Accordingly, the plot
demonstrated that female sex, older age, and having a lower BMI
were the strongest predictors of high-risk outcomes, consistently
elevating the predicted values. Variables such as race, uric acid
level, and HDL cholesterol exhibited mixed effects depending on
the individual profiles. The participants with a lower income tended
to cluster in higher-risk regions.

TABLE 2. Comparison of Demographic and Laboratory Characteristics Between Normal and Low BMD Groups.

Variables Normal BMD n = 6711 Low BMD n = 5397 vt Effect size p -value
Sex’

Male 4311 (64.2) 1981 (36.7) 908.41 0.28 <0.0071

Female 2400 (35.8) 3416 (63.3)
Age* 61.76 = 8.44 66.38 = 9.39 28.47 0.52 < 0.001
Body mass index (BMI)* 30.32 £5.84 26.80 = 5.06 34.97 0.64 < 0.001
Race/ethnicity?

Mexican American 983 (14.6) 703 (13.0) < 0.001

Other Hispanic 676 (10.1) 537 (9.9)

Non-Hispanic White 2456 (36.6) 2663(49.3) 528.63 0.21

Non-Hispanic Black 2006 (29.9) 747 (13.8)

Other Race 590 (8.8) 747 (13.8)
Family income/poverty* 2.76 £ 1.64 2.54 +1.58 7.46 0.14 < 0.001
Uric acid (mg/dL)* 583 £ 1.44 531+ 1.40 20.00 0.37 < 0.001
Diabetes®

No 4984 (74.4) 4310 (79.9) <0.001

Borderline 256 (3.7) 164 (3.1) 53.52 0.07

Yes 1469 (21.9) 918 (17.0)
HDL-cholesterol (mg/dL)* 51.58 £ 15.16 57.67 £17.12 20.74 0.38 < 0.001
Creatinine, urine (mg/dL)* 122.75 +74.30 99.59 + 66.80 17.83 0.33 < 0.001
Alkaline phosphatase (IU/L)* 74.83 + 24.14 78.25 + 25.73 7.52 0.14 < 0.001
Mean cell volume (fL)* 89.33 £5.72 90.48 £ 5.47 11.21 0.21 < 0.001
Lymphocyte (%)* 30.89 +8.73 30.13 £ 8.87 4.73 0.09 < 0.001
Diastolic blood pressure (mmHg)* 73.15+£12.49 70.11 £ 13.46 12.86 0.23 < 0.001
Glycohemoglobin (%)* 6.13+1.25 5.94 £ 1.07 8.86 0.16 < 0.001

Continuous variables were summarized as mean * standard deviation, categorical variables were presented as n (%). *p values were calculated using independent
samples t-test for continuous variables. Tp values were calculated using Pearson y? test for categorical variables.

BMD, bone mineral density.
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FIG. 4. (a) Beeswarm plot of Top 14 Features from SHAP importance analysis based on extra trees classifier. (b) Bar plot of the mean absolute SHAP
values. (c) SHAP heatmap displaying participant-by-feature contributions.

Figure 5 demonstrates the model-derived influence of the 10
most important predictors on low BMD risk, visualized as SHAP-
dependence plots with LOWESS smoothing. The levels of uric acid,
BMI, and urinary creatinine demonstrated negative correlations;
higher levels of all three were associated with a lower predicted
risk of low BMD, particularly up to approximately 8 mg/dL for uric
acid, 35 kg/m? for BMI, and 150 mg/dL for urinary creatinine. These
relationships appear to plateau beyond these thresholds, suggesting
a potential nonlinear or saturation effect in the model’s predictions.
The predicted risk of low BMD displayed an inverse relationship
with the diabetes status. As shown in the SHAP-dependence plot,
individuals with diagnosed diabetes (coded 2) had the lowest
predicted risk of low BMD, followed by those with prediabetes
(coded 1), compared with individuals without diabetes (coded
0). Non-Hispanic White individuals (3 coded) were most strongly
associated with increased and predicted risk of low BMD, making

them the highest-risk ethnic category. The family income-to-poverty
ratio showed an inverse relationship with predicted low BMD risk.
In other words, a higher ratio was linked to a lower predicted risk.
Higher HDL cholesterol and ALP levels were both associated with an
increased predicted risk of low BMD.

Figure 6 shows sex-stratified SHAP importance profiles. In both
graphs, age and BMI acted as the primary influencing factors, albeit
the magnitude of their effects differed. For instance, higher BMI was
associated with a greater reduction in the predicted risk in women
(SHAP range: -0.30 to 0.00) compared to men (-0.15to 0.00). In
addition to the similar predictors, sex-specific differences were
recorded among other influential features in the top 10, with
urinary creatinine and ALP levels having a greater impact in men,
whereas the serum globulin and C-reactive protein (CRP) levels were
more influential in women.
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DISCUSSION

In this study, we applied ML approaches to predict low BMD using
demographic, clinical, and biochemical data from the NHANES
dataset. Among eleven classifiers, ensemble tree-based models,
particularly the ET, highlights the capability of ML to capture
complex, nonlinear interactions. Similar findings have been
reported in previous studies, where tree-based ML algorithms,
such as Random Forest, XGBoost, and LightGBM, achieved superior
performance in predicting osteoporosis or low BMD risk.?? The
Extra Trees algorithm has also exhibited strong predictive accuracy
in other biomedical domains, including coronary artery disease,
Hodgkin lymphoma, Parkinson’s disease, cervical cancer, and
Helicobacter pylori. These results emphasize its robustness and
adaptability across complex and diverse patterns and datasets.?>*
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Our findings reaffirmed well-established predictors such as age,
sex, and BMI, which consistently show strong associations with
osteoporosis risk.>"*2 Older age, female sex, and lower BMI were
significantly associated with reduced BMD, consistent with prior
evidence linking age-related bone loss and postmenopausal
hormonal decline to reduced bone mass.3'

Although univariate analyses (Table 2) revealed statistically
significant differences for all variables, such results must be
interpreted cautiously, given the large sample size, where small
absolute differences may appear significant. For instance,
variations in family income/poverty or lymphocyte percentage
may hold limited clinical importance individually. However, this
finding highlights the strength and rationale of the ML approach.
Notably, the variables presented in Table 2 were identified through
SHAP values as the top contributors in the ML models. Unlike the
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marginal comparisons shown in Table 2, the SHAP values quantify
the conditional contribution of each feature, considering the
interactions with all other predictors in the model. Consequently, a
variable exhibited a small univariate effect, but continued to play a
crucial role in the model’s predictive power owing to its cumulative
and interactive effects. This dual perspective emphasized the
necessity of integrating traditional statistical comparisons with ML-
based feature importance for a comprehensive interpretation of the
predictors of low BMD.

Beyond conventional risk factors, SHAP analysis revealed additional,
biologically plausible contributors. The present study’s results align
with the latest population-based analysis demonstrating an inverse
(non-linear) association between the serum uric acid levels and BMD
among Chinese and American cohorts, suggesting that higher uric
acid may offer a protective effect on the bone mass up to a threshold
level >* Considering the damaging consequences of oxidative stress
on bone metabolism, the antioxidant properties of uric acid may
represent a potential protective mechanism against low BMD.*
Although HDL cholesterol is regarded as a protective factor in the
context of cardiovascular diseases, recent studies have suggested
that high HDL levels may be associated with an increased risk of
osteoporosis.®® Preclinical studies have indicated that HDL leads
to reduced BMD by adversely affecting the osteoblast number and
function.®” Consistent with these findings, our study recorded that
higher HDL levels, particularly above 65-70 mg/dL, were associated
with a higher predicted risk of low BMD. Despite diabetes appearing
as a risk factor in the low BMD group, the SHAP values exhibited an
overall positive influence, indicating a higher BMD among diabetic
individuals. This finding is consistent with those of several studies,
particularly in relation to type-2 diabetes that report normal or even
higher BMD values.*®* In addition, glycohemoglobin level reflects
the average level of glucose in the blood over the past 2-3 months,
and it serves to diagnose prediabetes. Similarly, our findings
indicated that higher glycohemoglobin levels were inversely
associated with lower BMD, as has been documented across several
previous studies.*#

Another notable finding was a positive association between urinary
creatinine and BMD, which has most commonly been explored
through ratio-based indices, such as urinary calcium/creatinine
or ALP/creatinine, with emerging evidence supporting a direct
association. For instance, Kim et al.*> reported that, in patients
with chronic kidney disease, higher urinary creatinine levels were
positively correlated with BMD, implying that urinary creatinine
could indicate maintained muscle mass and metabolic health, both
of which are beneficial for skeletal integrity. Similarly, Schwaderer
et al.® reported that children with low BMD exhibited significantly
lower urinary creatinine levels. These findings are consistent with
our results that identified urinary creatinine as a positive predictor
of BMD, particularly in men, highlighting its potential utility as a
noninvasive marker in osteoporosis risk assessment.

ALP displayed a nonlinear association with BMD, where levels up
to 130 U/L correlated with sharp declines in BMD, followed by a
plateau. This pattern is consistent with findings from Cheng and
Zhao*, who reported similar nonlinearity between ALP and BMD
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using generalized additive models. However, in our sex-stratified
analysis, ALP ranked higher among males, whereas its impact
in females was relatively weaker, likely due to the dominance of
hormonal and inflammatory factors.

Socioeconomic status, as quantified by the family income/poverty,
demonstrated an inverse association with a low BMD risk, which
is consistent with past reports linking lower income to poorer
bone health outcomes as a result of reduced access to nutrition,
healthcare, and physical activity.** The presence of such a gradient
highlights the importance of incorporating social determinants
into predictive modeling for osteoporosis. Similarly, racial and
ethnic backgrounds have emerged as influential factors, reflecting
disparities in bone health potentially stemming from genetic
differences, cultural behaviors, or unequal access to healthcare
resources.*®

Sex-specific analyses revealed that age and BMI remained the
strongest predictors in men and women, though the protective effect
of BMI was more pronounced in men, while age exerted a stronger
influence in women. Urinary creatinine and ALP ranked higher
among men, whereas globulin and CRP were stronger predictors
among women. Elevated CRP, a marker of inflammation, has been
widely associated with lower BMD, particularly in women,* while
globulin-related measures (e.g., albumin-to-globulin ratio) may
reflect nutritional and inflammatory status relevant to osteoporosis
risk.*” Despite its strength, this study has several limitations. The
cross-sectional design of NHANES restricts causal inference. Key
variables such as genetic data, menopausal status, and physical
activity were excluded due to missing data. Although SHAP values
enhance interpretability, the biological implications of some
nonlinear relationships warrant further investigation. Additionally,
our analyses were conducted on an unweighted NHANES sample,
and external validation in independent populations would
strengthen generalizability. Nonetheless, the primary goal, to
compare ML algorithms and identify influential predictors, was
effectively achieved.

In conclusion, this study demonstrates the feasibility and
interpretability of ML-based models, particularly tree-based
algorithms, for accurate prediction of low BMD using routinely
collected health data. The ET showed the highest predictive
performance. By integrating SHAP-based interpretability, we
uncovered  biologically and socioeconomically meaningful
predictors that could inform personalized screening strategies
and public health interventions aimed at reducing the burden of
osteoporosis and osteopenia.
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