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Background: Low bone mineral density (BMD) is a common age-related 
condition that elevates the risk of fractures and mortality. Machine 
learning (ML) techniques offer a promising approach for early prediction 
using readily available clinical, biochemical, and demographic data. 

Aims: To evaluate the predictive performance of eleven ML models in 
identifying low BMD and to determine the most influential risk factors 
using the best-performing model. 

Study Design: Cross-sectional study. 

Methods: Data were obtained from National Health and Nutrition 
Examination Survey (2005-2010, 2013-2014, and 2017-2020), focusing 
on individuals aged ≥ 50 years with available femoral neck or total 
femur BMD data. After applying exclusion criteria, 12,108 participants 
were included. Supervised ML algorithms were trained using 57 clinical, 
biochemical, demographic, and behavioral features. Model performance 
was assessed using accuracy, area under the curve (AUC), recall, precision, 

and F1 score. SHAP analysis was employed to interpret model outputs 
and rank predictors. 

Results: The extra trees classifier outperformed other ML methods, 
achieving an accuracy of 76.7% and an AUC of 0.85. Recursive Feature 
Elimination with Cross-Validation identified 14 key predictors of low 
BMD in descending order of importance: sex, age, body mass index, race, 
family income-to-poverty ratio, serum uric acid, diabetes status, HDL 
cholesterol, urinary creatinine, alkaline phosphatase, mean cell volume, 
lymphocyte count, diastolic blood pressure, and glycohemoglobin. 

Conclusion: Tree-based ML models, particularly Extra Trees, can 
effectively predict low BMD. The identified risk factors include both 
established and lesser-studied predictors. These findings support the 
use of ML for personalized osteoporosis and osteopenia screening and 
highlight its ability to capture complex, multifactorial relationships in 
population health data.

 Eda Karaismailoğlu1,  Serkan Karaismailoğlu2

INTRODUCTION

Bone mineral density (BMD) declines with age, depending on the 
bone mass, leading to osteopenia and, in more advanced stages, 
osteoporosis.1 This condition is a major global public health concern 
that adversely affects the quality of life of millions worldwide. Low 
bone density affects approximately 200 million individuals globally, 
including 54 million older adults in the United States (US).2 It is a 
key risk factor for hip fractures, which is one of the most serious 
consequences of falls in older adults, with a 1-year mortality rate 
of 30%.3 Although this issue is often highlighted in postmenopausal 
women, it also significantly affects men, who account for nearly one-
third of all hip fractures and experience poorer outcomes.4 

Dual-energy X-ray absorptiometry (DXA) is a non-invasive imaging 
technique that accurately assesses bone density and strength using 
low radiation and is considered the gold standard for osteoporosis 

screening. Areal BMD measured by DXA is converted to a T-score 
based on the mean and standard deviation (SD) of a young adult 
reference group: a T-score > -1.0 is considered normal, between 
-1.0 and -2.5 indicates osteopenia, and ≤ -2.5 defines osteoporosis, 
according to the World Health Organization.1 Early detection of low 
bone density, particularly among individuals with T-scores < -1.0 but 
not yet osteoporotic, is essential for timely intervention and fracture 
prevention.

In recent years, machine learning (ML) techniques have shown 
considerable potential in the early diagnosis and risk stratification 
of chronic diseases, including musculoskeletal disorders.5-9 ML 
algorithms can identify complex, non-linear patterns within clinical 
and demographic data, enabling more precise prediction of low bone 
density compared with traditional statistical methods. However, the 
comparative performance of different ML models in predicting low 
bone density remains insufficiently explored.
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The aim of this study was to (1) compare the predictive performance 
of 11 ML algorithms in identifying individuals with low bone 
density using the publicly available National Health and Nutrition 
Examination Survey (NHANES) dataset, and (2) to identify the most 
influential predictors of low bone density using the best-performing 
model. The insights gained from this research are expected to 
support evidence-based clinical decision-making and guide 
future studies toward personalized interventions for osteoporosis 
prevention and management.

MATERIALS AND METHODS

Study population and data source

This study utilized data from selected cycles of the NHANES, a 
nationally representative program conducted by the National 
Center for Health Statistics under the Centers for Disease Control 
and Prevention (https://wwwn.cdc.gov/nchs/nhanes/). NHANES 
employed a stratified, multistage probability sampling design to 
obtain health-related data from the civilian, noninstitutionalized 
US population. Data obtained from the periods of 2005-2010, 
2013-2014, and 2017-2020 were included in the study based on the 
availability of BMD values (g/cm2) obtained by DXA using Hologic QDR 
4500A fan-beam densitometers (Hologic Inc., Bedford, MA, USA).10 

The dataset also included information on the sociodemographic 
characteristics (e.g., age, sex, race/ethnicity, education), behavioral 
factors (e.g., smoking habits, physical activity, alcohol use), clinical 
parameters [e.g., body mass index (BMI), blood pressure], and 
biochemical markers (e.g., serum vitamin D, calcium, phosphorus). 

Femoral neck and total femur BMD measurements were evaluated 
to deduce the low bone density. An individual with a femoral neck 
or total femur T-score value of < -1 was classified into the low bone-
density group. T-scores were calculated using the following formula: 

T-score = [individual BMD-mean BMD (reference population)]/SD 
(reference population).

The reference means and SD values were derived from the NHANES 
III reference data, as published by Looker et al.11 

Individuals  who met the following  criteria were  excluded: 
(1)  those  aged < 50 years, (2)  those  without BMD measurements 
at the femoral neck or total femur, and (3) those with a history of 
cancer diagnosis. Based on these criteria, 12,108 participants were 
enrolled in the study. The exclusion criteria applied in the study are 
depicted in Figure 1.

Data preprocessing

The procedure outlined below was implemented to prepare the 
data for the analysis. As a  first step in data preparation, variables 
with > 30% missing values were removed from the dataset.

Missing value imputation: Missing data of continuous features 
were imputed using the K-nearest neighbors (KNN) method, which 
estimates missing values based on the similarity of feature patterns 
among the closest observations in the dataset, and the  most 
frequent category was used for imputing categorical variables.

Categorical encoding: Nominal features were converted to 
numerical form via one-hot encoding.

Feature scaling: All continuous variables were standardized using 
z-score normalization to ensure comparability across features. The 
standardized value z for a given observation x was computed was 
computed using the following formula:

z
i 
= (x

i
−μ)/σ,

where, x
i
 represents the ith individual’s value, μ is the mean of the 

feature, and σ is the SD of the feature.

Multicollinearity: Features with a correlation coefficient > 0.80 or 
< -0.80 were identified and removed to reduce multicollinearity.

Feature selection: In  order  to optimize  the model performance 
and decrease overfitting, feature selection was applied based on the 
Light Gradient Boosting Machine (LightGBM) algorithm. LightGBM 
calculates feature importance scores during the model training 

FIG. 1. Flowchart of the study design. 
NHANES, National Health and Nutrition Examination Survey, BMD, bone mineral 

density, ET, extra trees classifier; RF, random forest classifier; LightGBM, light gradient 

boosting machine; GB, gradient boosting classifier; LR, logistic regression; LDA, linear 

discriminant analysis; AdaBoost, AdaBoost classifier; RC, ridge classifier; SVM, support 

vector machine; DT, decision tree classifier; KNN, K-nearest neighbors; AUC, area under 

the receiver operating characteristic curve.
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process by evaluating each variable’s contribution to information 
gain across decision trees. The importance scores are used to rank 
the input variables, and the least informative features are removed 
from the dataset. In this study, the threshold for selection was set to 
retain the top 20% of features with the highest importance scores. 

Data splitting: The dataset was randomly partitioned into a 
training set (80%) and a testing set (20%). Feature selection, model 
fitting, and hyperparameter tuning were performed solely on 
the training set, and the final model performance metrics were 
evaluated on the testing set.

Cross-validation: We employed 10‑fold cross‑validation on the 
training set to assess model generalizability and guard against 
overfitting. The data were randomly split into ten equally sized 
folds, and, in each iteration, nine folds were used to fit the model 
and optimize hyperparameters, whereas the remaining fold was 
used as the validation set. Performance metrics [e.g., area under 
the curve (AUC), accuracy] were computed for each fold and then 
averaged to provide a robust estimate of model performance before 
the ultimate assessment on the withheld test dataset.

To avoid data leakage, all preprocessing steps (including imputation, 
encoding, scaling, feature selection, and feature elimination) were 
implemented within a strictly nested pipeline. These transformations 
were fitted exclusively on the training folds during cross-validation 
and subsequently applied to the corresponding validation fold, 
whereas the held-out test set was used only for the final model 
evaluation.

Machine learning algorithms

A comprehensive array of supervised classification algorithms, 
including ensemble tree  techniques, gradient-based  learning 
systems, linear models, kernel machines,  and instance-
based methodologies, was used in the study.

Extra trees classifier

The ET is an ensemble learning approach that relies on randomly 
generating numerous decision trees. This strategy differs from the 
conventional decision trees by employing entirely random threshold 
values at the node separation for each tree, which  enhances  the 
variety among the models. This randomization plays a role in 
preventing overfitting and presents robust performance on noisy 
datasets.12 

Random forest classifier

RF constructs multiple decision trees with bootstrapped subsets of 
the training data and integrates their predictions through majority 
voting. The procedure incorporates randomness in two ways: first, 
by sampling the data, and second, by selecting a random subset of 
features at each node to determine the optimal split. This approach 
helps reduce the variance of individual decision trees and prevents 
overfitting, which is common in single-tree models.13 

LightGBM 

LightGBM is a gradient‑boosted algorithm that constructs trees by 
prioritizing leaves, providing faster training and lower memory 

usage on big datasets. It leverages histogram-dependent partitioning 
to efficiently handle a substantial quantity of continuous features.14 

Gradient boosting classifier

As a sequential ensemble learning framework, the GB builds an 
additive model by optimizing a loss function using decision trees 
as weak learners. In contrast to parallel methodologies such as 
Random Forest, it fits trees in sequence, whereby every new tree 
aims to correct the residual errors of the prior ensemble of models. 
This approach offers a highly flexible and powerful model that can 
identify elaborate nonlinear relationships. Nevertheless, it is also 
more sensitive to overfitting.15 

Logistic regression

LR is a linear classification algorithm commonly used due to its 
simplicity, interpretability, and statistical foundations. It models 
the probability of a binary outcome utilizing the logistic (sigmoid) 
function, with the underlying assumption of a linear relationship 
between the log-odds of the target and the independent variables.16 

Linear discriminant analysis

LDA assumes normally distributed classes with equal covariance 
matrices and finds a linear combination of features that maximizes 
class separation. It is particularly effective when class distributions 
in scenarios by class distributions that are nearly Gaussian, and the 
sample sizes are within a moderate range.17 

AdaBoost classifier

Adaptive Boosting (AdaBoost) is an adaptive boosting algorithm that 
sequentially fits weak learners by reweighting incorrectly classified 
instances in every subsequent round. It works by sequentially 
training models, where each subsequent learner focuses more on 
the instances that were misclassified by the previous ones. However, 
this approach can be sensitive to noisy data and outliers.18 

Ridge classifier

The RC is a regularized version of linear classification that applies 
an L2 penalty to shrink coefficient estimates. The method reduces 
overfitting, especially in cases with high-dimensional or collinear 
data. Though it is similar to LR, this method uses a least-squares loss 
function rather than a log-likelihood approach.19 

Support vector machine

SVM is a supervised learning model used for classification tasks, 
especially when the feature space is high-dimensional. The linear 
kernel aims to identify the optimal hyperplane that maximally 
separates classes by maximizing the margin between the closest data 
points, which is known as support vectors. Although it performs well 
in big datasets, it may require significant computational resources.20 

Decision tree classifier

DT is a non-parametric, tree-based supervised learning algorithm 
that iteratively divides the dataset into smaller partitions, with 
each division determined by the feature that results in the greatest 
information gain. Finally, it establishes a tree structure where the 
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leaves represent class labels. It is easy to interpret and visualize, but 
prone to overfitting without proper pruning.21 

K-Nearest neighbors

KNN is an instance-driven, non-parametric classification algorithm 
that assigns class labels based on the majority vote of the “k” closest 
neighbors in the feature space. It stores all the training dataset and 
calculates distances (generally Euclidean) between a new input and 
existing samples during the prediction process. Despite being simple 
to implement, this  approach  may be slow during prediction and 
sensitive to the choice of k and the distance metric.22 

Performance evaluation metrics

The performance of the classification models was evaluated using 
accuracy, AUC, recall, precision, and F1. Accuracy measures the 
proportion of correctly classified instances among all observations 
and is defined as follows:

where, TP, TN, FP, and FN represent true positive, true negative, false 
positive, and false negative values, respectively.

Recall or sensitivity quantifies the model’s capacity to identify actual 
positive instances and is calculated as follows:

Precision indicates the proportion of true positive predictions 
among all positive predictions.

The F1-score is the harmonic mean of Precision and Recall, serving 
as a single metric that balances the trade-off between them.

AUC is the probability that a randomly selected positive observation 
is ranked higher by the model than a randomly selected negative 
observation. A higher AUC reflects a better ability to distinguish 
between classes.

Statistical analysis

Normality of quantitative variables was tested with the 
Kolmogorov-Smirnov test. An independent samples t - test was 
implemented to compare continuous variables between low and 
normal bone densities, and the data were expressed as the mean ± 
SD. Categorical variables were shown as n (%) and compared using 
the Pearson χ² test (or Fisher’s exact test when expected counts 
were < 5). All tests were two-tailed, with p < 0.05 considered 
to indicate statistical significance. Analyses were performed in 
R version 4.3.2 (R Foundation for Statistical Computing, Vienna, 
Austria).

ML models were conducted utilizing Python (version 3.10.0) within 
the JupyterLab environment (version 4.3.5). Data preprocessing, 
feature selection, model training, and evaluation were implemented 
with the PyCaret (version 3.2.0) library, an open-source, low-code 
ML framework that provides an integrated pipeline for classification 
and regression tasks. Performance evaluation metrics, such as 
accuracy, AUC, precision, recall, and F1, were computed to assess 
and compare the model performance. 

RESULTS

A total of 12,108 individuals (female, 48%) who were ≥ 50 years 
of age (64 ± 9) and had complete femoral neck and total femur 
BMD data were included in this study. Approximately 45% of 
the participants were included in the low BMD group. The ML 
models were constructed employing 57 features, systematically 
categorized into seven categories to reflect their physiological 
and clinical relevance, as follows: 34 biochemical markers 
(including serum and urinary analytes), 12 hematological indices 
(components of the complete blood count), 4 demographic 
characteristics (age, sex, race/ethnicity, and income), 3 vital signs 
(pulse and blood pressure measurements), 2 self-reported clinical 
indicators (diabetes status and sleep duration), 1 anthropometric 
parameter (BMI), and 1 measure of physical function (walking 
ability). 

Table 1 summarizes the performance of the 11 ML classifiers 
in predicting low BMD. Models were ranked by accuracy. The 
ET achieved the best overall performance with an accuracy of 
0.7672, AUC = 0.8524, recall = 0.6873, and precision = 0.7722. 
The RF followed closely (accuracy = 0.7621; AUC = 0.8446). 
LightGBM also performed well (AUC = 0.8104; precision = 0.7329), 
reflecting a balanced trade-off between sensitivity and specificity. 
Ensemble methods such as Gradient Boosting and AdaBoost 
showed moderate predictive performance, whereas linear models 
(e.g., LR, RC) yielded slightly lower accuracy but demonstrated 
consistent recall and AUC values. Hyperparameter tuning of 
the ET model using grid search with 10-fold cross-validation 
did not yield improvements; thus, the default configuration 
was retained for the final model. The key parameters included: 
n_estimators = 100, criterion = “gini”, max_features = “sqrt”, 
min_samples_split = 2, min_samples_leaf = 1, and bootstrap = 
False. Other parameters were left at their default values, including 
max_depth = None, max_leaf_nodes = None, and random_state 
= 123 for reproducibility. The calibration of the best-performing 
model, the ET, was assessed to evaluate the reliability of its 
probability predictions. The calibration curve, as presented in 
Figure 2a, demonstrated that the model was well-calibrated, as 
the plot of its predicted probabilities closely tracks the diagonal 
line representing perfect calibration. This visual finding is further 
supported by a low Brier score of 0.12, indicating a high degree 
of agreement between the predicted risks and the observed 
outcomes. In addition, the confusion matrix indicates the model 
achieved a sensitivity of 69% for detecting low BMD and a 
specificity of 84% for identifying normal BMD (Figure 2b).
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After identifying the best-performing model, we conducted feature 
selection to determine the most influential risk factors implicated in 
low BMD. The result obtained from the recursive feature elimination 
with cross-validation approach utilizing the ET was presented in 
Figure 3. The model’s performance, as measured based on the 
cross-validated accuracy, increased with the addition of more 
features and then reached a plateau at approximately 14 features, 
with 0.767 accuracy. It demonstrates that a smaller, selected subset 
of variables can achieve strong predictive performance without 
including all available features.

Using SHAP (SHapley Additive exPlanations) method, we identified 
14 key predictors, including sex, age, BMI, race, family income/
poverty, serum uric acid (mg/dL), diabetes status, HDL‑cholesterol 
(mg/dL), urinary creatinine (mg/dL), alkaline phosphatase (ALP; 
IU/L), mean cell volume (fL), lymphocyte (%), diastolic blood pressure 
(mmHg), and glycohemoglobin (%), and reported that this subset of 
features yielded the highest predictive accuracy for predicting low 

TABLE 1. Performance Metrics of Classification Models.

Model Accuracy Recall Precision F1 AUC (95% CI)

Extra trees classifier 0.7672 0.6873 0.7722 0.7272 0.8524 (0.8415-0.8670)

Random forest classifier 0.7621 0.6890 0.7697 0.7271 0.8446 (0.8276-0.8525)

Light gradient boosting machine 0.7375 0.6762 0.7329 0.7034 0.8104 (0.8085-0.8278)

Gradient boosting classifier 0.7230 0.6520 0.7193 0.6840 0.7960 (0.7770-0.8121)

Logistic regression 0.7100 0.6565 0.6960 0.6756 0.7859 (0.7739-0.8091)

Linear discriminant analysis 0.7096 0.6577 0.6948 0.6757 0.7859 (0.7637-0.7988)

Ada boost classifier 0.7095 0.6500 0.6977 0.6730 0.7803 (0.7658-0.8096)

Ridge classifier 0.7093 0.6571 0.6946 0.6753 0.7859 (0.7341-0.8020)

Support vector machine 0.6948 0.6312 0.6837 0.6564 0.7602 (0.7498-0.7873)

Decision tree classifier 0.6891 0.6693 0.6594 0.6732 0.6876 (0.6680-0.6970)

K neighbors classifier 0.6664 0.6216 0.6419 0.6316 0.7220 (0.7071-0.7314)

AUC, area under the curve, CI, confidence interval

FIG. 2. (a) Calibration curve demonstrating the model’s reliability. (b) Confusion matrix detailing the model’s classification performance.
BMD, bone mineral density.

a b

FIG. 3. Optimal feature subset determination using RFECV for extra trees 
classifier.
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BMD. The comparison of the relevant variables between the low and 
normal BMD groups is presented in Table 2.

The SHAP beeswarm plot illustrates both the importance and 
direction of each feature’s impact on the model. The red points 
represent higher feature values, whereas the blue points indicate 
lower values. The x-axis reflects each feature’s contribution to the 
model’s prediction of low BMD. The top-ranked feature in the plot 
is the most influential in the prediction. Accordingly, sex, age, and 
BMI are the top three contributors to the model’s prediction of low 
BMD. Female sex, older age, and having a lower BMI were found to 
be associated with a higher predicted risk of low BMD. In addition, 
demographic factors, race/ethnicity, and family income/poverty 
contributed meaningfully. Among the biochemical markers tested, 
lower uric acid levels were associated with increased predicted 
risk, whereas higher HDL-cholesterol levels were linked to higher 
risk (Figure 4a). The SHAP bar plot displays the average absolute 

impact of each feature on the model’s predictions (Figure 4b). 
Figure 4c presents the SHAP heatmap for the test set, wherein each 
column represents an individual, ordered left to right by the total 
magnitude of the SHAP values. In this figure, rows correspond to 
the most influential features. Red color reflects a risk-increasing 
contribution to the predicted probability of low BMD, whereas blue 
color is associated with a decreased risk. The black trace above the 
heat map [f(x)] shows the model’s predicted risk per individual, 
confirming that columns with the largest cumulative pink area 
correspond to the highest predicted risk. Accordingly, the plot 
demonstrated that female sex, older age, and having a lower BMI 
were the strongest predictors of high-risk outcomes, consistently 
elevating the predicted values. Variables such as race, uric acid 
level, and HDL cholesterol exhibited mixed effects depending on 
the individual profiles. The participants with a lower income tended 
to cluster in higher-risk regions.

TABLE 2. Comparison of Demographic and Laboratory Characteristics Between Normal and Low BMD Groups.

Variables Normal BMD n = 6711 Low BMD n = 5397 χ²/t Effect size p -value

Sex†

   Male 4311 (64.2) 1981 (36.7) 908.41 0.28 < 0.001

   Female 2400 (35.8) 3416 (63.3)

Age* 61.76 ± 8.44 66.38 ± 9.39 28.47 0.52 < 0.001

Body mass index (BMI)* 30.32 ± 5.84 26.80 ± 5.06 34.97 0.64 < 0.001

Race/ethnicity†

   Mexican American 983 (14.6) 703 (13.0) < 0.001

   Other Hispanic 676 (10.1) 537 (9.9)

   Non-Hispanic White 2456 (36.6) 2663(49.3) 528.63 0.21

   Non-Hispanic Black 2006 (29.9) 747 (13.8)

   Other Race 590 (8.8) 747 (13.8)

Family income/poverty* 2.76 ± 1.64 2.54 ± 1.58 7.46 0.14 < 0.001

Uric acid (mg/dL)* 5.83 ± 1.44 5.31 ± 1.40 20.00 0.37 < 0.001

Diabetes†

   No 4984 (74.4) 4310 (79.9) < 0.001

   Borderline 256 (3.7) 164 (3.1) 53.52 0.07

   Yes 1469 (21.9) 918 (17.0)

HDL-cholesterol (mg/dL)* 51.58 ± 15.16 57.67 ± 17.12 20.74 0.38 < 0.001

Creatinine, urine (mg/dL)* 122.75 ± 74.30 99.59 ± 66.80 17.83 0.33 < 0.001

Alkaline phosphatase (IU/L)* 74.83 ± 24.14 78.25 ± 25.73 7.52 0.14 < 0.001

Mean cell volume (fL)* 89.33 ± 5.72 90.48 ± 5.47 11.21 0.21 < 0.001

Lymphocyte (%)* 30.89 ± 8.73 30.13 ± 8.87 4.73 0.09 < 0.001

Diastolic blood pressure (mmHg)* 73.15 ± 12.49 70.11 ± 13.46 12.86 0.23 < 0.001

Glycohemoglobin (%)* 6.13 ± 1.25 5.94 ± 1.07 8.86 0.16 < 0.001

Continuous variables were summarized as mean ± standard deviation, categorical variables were presented as n (%). *p values were calculated using independent 
samples t-test for continuous variables. †p values were calculated using Pearson χ² test for categorical variables.
BMD, bone mineral density.
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Figure 5 demonstrates the model-derived influence of the 10 
most important predictors on low BMD risk, visualized as SHAP-
dependence plots with LOWESS smoothing. The levels of uric acid, 
BMI, and urinary creatinine demonstrated negative correlations; 
higher levels of all three were associated with a lower predicted 
risk of low BMD, particularly up to approximately 8 mg/dL for uric 
acid, 35 kg/m² for BMI, and 150 mg/dL for urinary creatinine. These 
relationships appear to plateau beyond these thresholds, suggesting 
a potential nonlinear or saturation effect in the model’s predictions. 
The predicted risk of low BMD displayed an inverse relationship 
with the diabetes status. As shown in the SHAP-dependence plot, 
individuals with diagnosed diabetes (coded 2) had the lowest 
predicted risk of low BMD, followed by those with prediabetes 
(coded 1), compared with individuals without diabetes (coded 
0). Non-Hispanic White individuals (3 coded) were most strongly 
associated with increased and predicted risk of low BMD, making 

them the highest-risk ethnic category. The family income-to-poverty 
ratio showed an inverse relationship with predicted low BMD risk. 
In other words, a higher ratio was linked to a lower predicted risk. 
Higher HDL cholesterol and ALP levels were both associated with an 
increased predicted risk of low BMD. 

Figure 6 shows sex-stratified SHAP importance profiles. In both 
graphs, age and BMI acted as the primary influencing factors, albeit 
the magnitude of their effects differed. For instance, higher BMI was 
associated with a greater reduction in the predicted risk in women 
(SHAP range: -0.30 to  0.00) compared to men (-0.15 to  0.00). In 
addition to the similar predictors, sex-specific differences were 
recorded among other influential features in the top 10, with 
urinary creatinine and ALP levels having a greater impact in men, 
whereas the serum globulin and C-reactive protein (CRP) levels were 
more influential in women.

FIG. 4. (a) Beeswarm plot of Top 14 Features from SHAP importance analysis based on extra trees classifier. (b) Bar plot of the mean absolute SHAP 
values. (c) SHAP heatmap displaying participant-by-feature contributions.

a b

c



 

554 Karaismailoğlu and Karaismailoğlu. Predicting Low Bone Density with Machine Learning

Balkan Med J, Vol. 42, No. 6, 2025

DISCUSSION

In this study, we applied ML approaches to predict low BMD using 
demographic, clinical, and biochemical data from the NHANES 
dataset. Among eleven classifiers, ensemble tree-based models, 
particularly the ET, highlights the capability of ML to capture 
complex, nonlinear interactions. Similar findings have been 
reported in previous studies, where tree-based ML algorithms, 
such as Random Forest, XGBoost, and LightGBM, achieved superior 
performance in predicting osteoporosis or low BMD risk.23-25 The 
Extra Trees algorithm has also exhibited strong predictive accuracy 
in other biomedical domains, including coronary artery disease, 
Hodgkin lymphoma, Parkinson’s disease, cervical cancer, and 
Helicobacter pylori. These results emphasize its robustness and 
adaptability across complex and diverse patterns and datasets.26-30 

Our findings reaffirmed well-established predictors such as age, 
sex, and BMI, which consistently show strong associations with 
osteoporosis risk.31,32 Older age, female sex, and lower BMI were 
significantly associated with reduced BMD, consistent with prior 
evidence linking age-related bone loss and postmenopausal 
hormonal decline to reduced bone mass.31-33 

Although univariate analyses (Table 2) revealed statistically 
significant differences for all variables, such results must be 
interpreted cautiously, given the large sample size, where small 
absolute differences may appear significant. For instance, 
variations in family income/poverty or lymphocyte percentage 
may hold limited clinical importance individually. However, this 
finding highlights the strength and rationale of the ML approach. 
Notably, the variables presented in Table 2 were identified through 
SHAP values as the top contributors in the ML models. Unlike the 

FIG. 5. SHAP dependence plots with LOWESS trends, Top 10 features of low BMD risk.
BMD, bone mineral density.

FIG. 6. Sex stratified SHAP summaries showing the top 10 predictors of low BMD risk in (a). men and (b). women. 
BMD, bone mineral density.
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marginal comparisons shown in Table 2, the SHAP values quantify 
the conditional contribution of each feature, considering the 
interactions with all other predictors in the model. Consequently, a 
variable exhibited a small univariate effect, but continued to play a 
crucial role in the model’s predictive power owing to its cumulative 
and interactive effects. This dual perspective emphasized the 
necessity of integrating traditional statistical comparisons with ML-
based feature importance for a comprehensive interpretation of the 
predictors of low BMD.

Beyond conventional risk factors, SHAP analysis revealed additional, 
biologically plausible contributors. The present study’s results align 
with the latest population‑based analysis demonstrating an inverse 
(non‑linear) association between the serum uric acid levels and BMD 
among Chinese and American cohorts, suggesting that higher uric 
acid may offer a protective effect on the bone mass up to a threshold 
level.34 Considering the damaging consequences of oxidative stress 
on bone metabolism, the antioxidant properties of uric acid may 
represent a potential protective mechanism against low BMD.35 
Although HDL cholesterol is regarded as a protective factor in the 
context of cardiovascular diseases, recent studies have suggested 
that high HDL levels may be associated with an increased risk of 
osteoporosis.36 Preclinical studies have indicated that HDL leads 
to reduced BMD by adversely affecting the osteoblast number and 
function.37 Consistent with these findings, our study recorded that 
higher HDL levels, particularly above 65-70 mg/dL, were associated 
with a higher predicted risk of low BMD. Despite diabetes appearing 
as a risk factor in the low BMD group, the SHAP values exhibited an 
overall positive influence, indicating a higher BMD among diabetic 
individuals. This finding is consistent with those of several studies, 
particularly in relation to type-2 diabetes that report normal or even 
higher BMD values.38,39 In addition, glycohemoglobin level reflects 
the average level of glucose in the blood over the past 2-3 months, 
and it serves to diagnose prediabetes. Similarly, our findings 
indicated that higher glycohemoglobin levels were inversely 
associated with lower BMD, as has been documented across several 
previous studies.40,41 

Another notable finding was a positive association between urinary 
creatinine and BMD, which has most commonly been explored 
through ratio-based indices, such as urinary calcium/creatinine 
or ALP/creatinine, with emerging evidence supporting a direct 
association. For instance, Kim et al.42 reported that, in patients 
with chronic kidney disease, higher urinary creatinine levels were 
positively correlated with BMD, implying that urinary creatinine 
could indicate maintained muscle mass and metabolic health, both 
of which are beneficial for skeletal integrity. Similarly, Schwaderer 
et al.43 reported that children with low BMD exhibited significantly 
lower urinary creatinine levels. These findings are consistent with 
our results that identified urinary creatinine as a positive predictor 
of BMD, particularly in men, highlighting its potential utility as a 
noninvasive marker in osteoporosis risk assessment. 

ALP displayed a nonlinear association with BMD, where levels up 
to 130 U/L correlated with sharp declines in BMD, followed by a 
plateau. This pattern is consistent with findings from Cheng and 
Zhao44, who reported similar nonlinearity between ALP and BMD 

using generalized additive models. However, in our sex-stratified 
analysis, ALP ranked higher among males, whereas its impact 
in females was relatively weaker, likely due to the dominance of 
hormonal and inflammatory factors.

Socioeconomic status, as quantified by the family income/poverty, 
demonstrated an inverse association with a low BMD risk, which 
is consistent with past reports linking lower income to poorer 
bone health outcomes as a result of reduced access to nutrition, 
healthcare, and physical activity.45 The presence of such a gradient 
highlights the importance of incorporating social determinants 
into predictive modeling for osteoporosis. Similarly, racial and 
ethnic backgrounds have emerged as influential factors, reflecting 
disparities in bone health potentially stemming from genetic 
differences, cultural behaviors, or unequal access to healthcare 
resources.46

Sex-specific analyses revealed that age and BMI remained the 
strongest predictors in men and women, though the protective effect 
of BMI was more pronounced in men, while age exerted a stronger 
influence in women. Urinary creatinine and ALP ranked higher 
among men, whereas globulin and CRP were stronger predictors 
among women. Elevated CRP, a marker of inflammation, has been 
widely associated with lower BMD, particularly in women,48 while 
globulin-related measures (e.g., albumin-to-globulin ratio) may 
reflect nutritional and inflammatory status relevant to osteoporosis 
risk.47 Despite its strength, this study has several limitations. The 
cross-sectional design of NHANES restricts causal inference. Key 
variables such as genetic data, menopausal status, and physical 
activity were excluded due to missing data. Although SHAP values 
enhance interpretability, the biological implications of some 
nonlinear relationships warrant further investigation. Additionally, 
our analyses were conducted on an unweighted NHANES sample, 
and external validation in independent populations would 
strengthen generalizability. Nonetheless, the primary goal, to 
compare ML algorithms and identify influential predictors, was 
effectively achieved.

In conclusion, this study demonstrates the feasibility and 
interpretability of ML-based models, particularly tree-based 
algorithms, for accurate prediction of low BMD using routinely 
collected health data. The ET showed the highest predictive 
performance. By integrating SHAP-based interpretability, we 
uncovered biologically and socioeconomically meaningful 
predictors that could inform personalized screening strategies 
and public health interventions aimed at reducing the burden of 
osteoporosis and osteopenia.
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